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RESUMO

A temperatura e a umidade são fatores determinantes para a preservação da qualidade
dos grãos durante o armazenamento. Em silos, o controle rigoroso dessas variáveis é
essencial para garantir a integridade do produto final. Este trabalho tem como objetivo
geral realizar uma análise comparativa entre a solução analítica e a solução numérica
— por meio do método de Runge-Kutta de quarta ordem — da equação diferencial que
representa a Lei de Resfriamento de Newton, aplicada ao contexto do resfriamento ou
aquecimento de grãos armazenados em silos. Especificamente, busca-se compreender o
conceito de Equações Diferenciais Ordinárias (EDOs), modelar o comportamento térmico
dos grãos com base na referida lei, desenvolver uma rotina computacional em Python
para resolver a equação de forma analítica e numérica, e comparar os resultados por meio
de gráficos. Também se objetiva evidenciar a aplicabilidade prática e pedagógica das
EDOs em contextos cotidianos, como o resfriamento de alimentos e o armazenamento de
grãos. A metodologia adotada envolve a coleta de dados térmicos em silos do grupo de
agronegócio Maranata, sua inserção em uma rotina desenvolvida no editor VS Code, e a
análise gráfica dos resultados gerados pela simulação computacional.
Palavras Chave: Lei de resfriamento de Newton; Runge-Kutta; Python..



ABSTRACT

Temperature and humidity are key factors in preserving the quality of grains during sto-
rage. In silos, strict control of these variables is essential to ensure the integrity of the
final product. This study aims to perform a comparative analysis between the analy-
tical and numerical solutions — using the fourth-order Runge-Kutta method — of the
differential equation representing Newton’s Law of Cooling, applied to the context of he-
ating or cooling grains stored in silos. Specifically, the objectives include understanding
the concept of Ordinary Differential Equations (ODEs), modeling the thermal behavior of
grains based on Newton’s Law, developing a Python-based computational routine to solve
the equation analytically and numerically, and comparing the results through graphical
analysis. The study also seeks to highlight the practical and pedagogical applicability of
ODEs in everyday contexts, such as food cooling and grain storage. The methodology
involves collecting thermal data from silos operated by the Maranata agribusiness group,
processing the data in a custom routine developed in the VS Code editor, and analyzing
the results through simulation-generated graphs.
Keywords: Newton’s Law of Cooling; Runge-Kutta; Python.
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1 INTRODUÇÃO

A temperatura e umidade são condições que influenciam na qualidade dos grãos
no seu processo de armazenamento. Por isso, nos silos de armazenagem de grãos é feito
um controle rigoroso que se dá em função da umidade e temperatura, pois, esses dois
parâmetros podem determinar a qualidade final do produto.

Para evitar os danos aos grãos armazenados nos silos é preciso que haja um mo-
nitoramento constante para verificar as condições internas, como níveis de gases tóxicos,
umidade e temperatura. Esse monitoramento pode ser feito através de simulações mate-
máticas para validar modelos de transferência de calor e de massa nos grãos armazenados.

Sobre isso, nessa pesquisa são apresentadas duas equações diferenciais ordinárias
que servirão como parâmetro para o desenvolvimento dessa pesquisa, são elas: o método
numérico de Runge-Kutta de quarta ordem e a solução analítica para a EDO da lei de
resfriamento de Newton. Como base para reflexão levanta-se o seguinte questionamento:
Qual dentre os dois métodos – numérico de Runge-Kutta de quarta ordem e a solução
analítica para a EDO da lei de resfriamento de Newton – oferece maior precisão na previsão
de temperaturas registradas no interior de um silo de armazenagem de grãos?

Desse modo, com o desenvolvimento dessa pesquisa espera-se que a rotina pro-
gramada em python forneça um conjunto de resultados gráficos, ao manipular as soluções
numéricas e analíticas, que permitirá identificar qual dentre os dois métodos resultam
em temperaturas mais próximas das temperaturas reais registradas no interior do silo de
armazenagem de grãos. Outra hipótese é que o método numérico, por ser mais adaptável
a situações de mudanças na variável do problema, se aproxime mais das temperaturas
reais registradas no silo.

Assim sendo, esse trabalho tem como objetivo geral realizar uma análise compa-
rativa entre os resultados obtidos pela solução numérica, utilizando o método de Runge-
Kutta de quarta ordem, e os resultados da solução analítica para a equação diferencial
da lei de resfriamento de Newton, no contexto do resfriamento ou aquecimento dos grãos
armazenados em um silo.

Para isso, busca-se especificamente: descrever o conceito de Equação Diferencial
Ordinária (EDO) e sua aplicação no estudo de processos de resfriamento/aquecimento.
Manipular a Lei de Resfriamento de Newton analiticamente e numericamente; analisar
o comportamento térmico dos grãos no interior de um silo, modelando o processo de
resfriamento/aquecimento com a lei de resfriamento de Newton; desenvolver uma rotina
em Python capaz de resolver a equação diferencial da lei de resfriamento de Newton
tanto de forma analítica quanto numericamente, utilizando o método de Runge-Kutta de
quarta ordem, e realizar a comparação entre os resultados através de gráficos e explorar
a aplicabilidade das Equações Diferenciais Ordinárias por meio de situações reais, como
o resfriamento de grãos em silos e o resfriamento de alimentos, a fim de evidenciar sua
relevância prática e potencial pedagógico.

Como justificativa para elaboração desse trabalho, pode-se destacar a necessidade
de continuação de um projeto de iniciação científica (PIBIC/UEMA) experimental que foi
desenvolvido em 2018/2019, o qual teve como objetivo caracterizar a temperatura dento
dos silos de armazenamento de grãos da região de Balsas. Para caracterizar a temperatura
dentro dos silos de armazenamento eram usados sensores dos quais se coletavam os parâ-
metros para gerar as curvas de resfriamento dentro dos silos. Nesse projeto experimental,
foram determinados vários parâmetros os quais serviram de base para gerar as curvas de
resfriamento para cada sensor de temperatura.
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Ressalta-se também que o monitoramento preciso da temperatura e umidade no
interior dos silos é o que garante o sucesso na armazenagem dos grãos. Apesar disso,
em descordo com a era da tecnologia, parte dos produtores de grãos ainda utilizam o
monitoramento não automatizado para determinar a variação de temperatura nos silos.

As consequências dessa escolha podem ser observadas nas percas de produção
ocasionadas pela má administração da temperatura e umidade no interior dos silos de
armazenagem de grãos. Ponderando que isso pode comprometer a qualidade dos grãos
promovendo a proliferação de microrganismos, fungos e prejudicar a durabilidade do es-
toque.

Pensando nisso, essa pesquisa tem como justificativa o aperfeiçoamento do con-
trole de temperatura no silo. Considerando que esse trabalho se desenvolve no município
de Balsas, que por sua vez é uma cidade que tem como principal fonte de renda o agro-
negócio, o impacto social se evidencia na forma como essa pesquisa pode contribuir para
os produtores locais ajudando-os a entender e controlar as condições de temperatura nos
silos.

Os estudos voltados para o controle de temperatura nos silos, em sua maioria, são
teóricos e pouco explorados na prática principalmente quando se trata de regiões rurais
em que a tecnologia ainda não alcançou todos os âmbitos de produção. Essa pesquisa tem
como proposta ampliar os estudos acerca dos conhecimentos práticos obtidos através da
manipulação das EDOs para o monitoramento mais preciso no interior dos silos. E com
base nisso, propor mudanças no controle de temperatura nos silos.

Além disso, ressalta-se que a matemática é uma ciência exata, que tem como
primícia gerar resultados precisos considerando os diversos métodos existentes e por isso
pode ser facilmente aplicada a situações cotidianas e é uma ferramenta capaz de solucionar
desde problemas simples até os mais complexos. Logo, as contribuições dessa pesquisa não
se limitam apenas a prática dos produtores, mas também oferece uma nova abordagem
ao aplicar técnicas numéricas de fácil manipulação, comprovando, assim, a eficácia e a
aplicabilidade da matemática.

A seguir, discorre-se sobre o armazenamento de grãos nos silos, uma contextuali-
zação da história das equações diferenciais, definição de ED e algumas de suas aplicações,
além de apresentar as duas EDOs em que esse estudo se baseia. Tudo isso, dialogando
com teóricos que investigam as temáticas citadas (D’ AMBRÓSIO, 1986; DEVILLA,
2004; BRONSON e COSTA, 2008; BOYCE e DIPRIMA, 2015, 2024). Na sequência são
apresentadas três seções, incluindo as conclusões finais, que delimitam o que pôde ser
analisado durante o desenvolvimento dessa pesquisa.

Na primeira seção intitulada “Procedimentos Metodológicos” ressalta-se o per-
curso metodológico dessa pesquisa baseando-se nos autores que lidam com as pesquisas
de cunho bibliográfico e de análise e coleta de dados, além disso, é feita a descrição
das atividades desenvolvidas durante o período disposto para pesquisa em questão. A
atividades práticas foram divididas em duas partes, sendo a primeira voltada para o de-
senvolvimento da rotina em Python que será responsável por manipular (através das duas
EDOs) os dados coletados no silo. A segunda parte voltou-se para a coleta de dados no
silo. A observação da variação de temperatura foi realizada no dia 15 de janeiro de 2024.
Um relatório de termometria emitido pelo grupo de agronegócios Maranata nesse dia foi
usado como fonte da coleta de dados.

Na segunda seção — Resultados e Implicações Práticas — são apresentados e
discutidos os resultados da pesquisa, com o intuito de esclarecer as potencialidades do ob-
jeto de estudo. Nessa seção são apresentados os gráficos que auxiliaram nas considerações
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finais dessa pesquisa, além disso são exibidas duas tabelas com as médias das tempera-
turas registradas ao longo do dia de observação e uma terceira tabela que apresenta as
temperaturas previstas pelas duas EDOs partindo da temperatura inicial do silo.

Por fim, na terceira seção, retoma-se o objetivo geral e problemática, buscando
refletir sobre as considerações finais dessa pesquisa.
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2 FUNDAMENTAÇÃO TEÓRICA

Essa seção está destinada a fundamentação teórica da pesquisa realizada. Ela
conversa diretamente com as ideias dos seguintes autores: D’ AMBRÓSIO (1986); DE-
VILLA (2004); BRONSON e COSTA (2008); BOYCE e DIPRIMA (2015/2024).

2.1 SILOS E OS GRÃOS

Preservar a qualidade do grão é uma etapa do meio agrícola que consiste em
proteger o produto dos fatores externos e internos que contribuem para sua deterioração.
Ou seja, “a manutenção da qualidade de grãos agrícolas armazenados por longos períodos
depende do controle de insetos, fungos e bactérias, que se reproduzem e se desenvolvem no
meio” (SUN; WOODS, 1997). Assim, com o intuito de preservar os grãos, os produtores
optam pela utilização de silos para o armazenamento seguro desses produtos.

Um silo, também conhecido como armazém de grãos, é uma estrutura projetada
para armazenar grandes quantidades de grãos como milho, trigo, arroz e soja, entre outros.
O funcionamento de um silo é essencial para preservar a qualidade dos grãos armazenados,
garantindo sua utilidade e valor comercial por um período prolongado.

A importância de um silo na manutenção da qualidade dos grãos é imensurável.
Além de evitar perdas financeiras para os produtores, garantir a qualidade dos grãos
é essencial para atender às exigências do mercado e assegurar alimentos seguros para
o consumo humano e animal. Um armazenamento adequado também contribui para a
estabilidade de preços, uma vez que possibilita o abastecimento contínuo do mercado,
mesmo em períodos de escassez de safra.

Em resumo, um silo é uma estrutura essencial para a conservação da qualidade
dos grãos. Através de um processo cuidadoso de limpeza, seleção, armazenamento e
monitoramento contínuo, é possível garantir a preservação das características nutricionais
e organolépticas dos grãos, bem como a valorização do produto final a ser comercializado.

Primeiramente, o processo pode iniciar na fase de colheita, na qual os grãos são
retirados das lavouras e transportados para o silo. Ao chegar ao armazém, os grãos são
descarregados em uma área específica, chamada de camada branca, onde ocorrerá a seleção
e limpeza dos mesmos. De acordo com Devilla:

[..] recomenda-se a secagem e limpeza do produto antes do seu armazenamento,
pois esses procedimentos diminuem a ação da microflora na massa de grãos,
retardando a velocidade das trocas gasosas e o processo de deterioração natural.
(DEVILLA et al., 2004, p. 285)

Logo após a limpeza, os grãos são transportados para a área de armazenamento
propriamente dita. Essa área pode ser composta por diversos compartimentos, cada qual
destinado a um tipo específico de grão. É necessário ter cuidado para evitar a mistura de
diferentes variedades, pois isso pode levar à perda da qualidade e da especificidade dos
grãos.

Nos compartimentos, os grãos são armazenados em pilhas verticais, sendo a altura
determinada com base nas propriedades físicas dos grãos, como peso específico e capaci-
dade de compactação. É importante garantir que não haja movimentação excessiva dos
grãos durante o armazenamento, pois isso pode causar danos à qualidade, como quebra,
amassados ou até mesmo a fermentação. Outro fator importante para preservação do grão
é o controle da umidade, pois, o teor de umidade de um produto exerce grande influência
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na variação de temperatura de uma massa de grãos durante a armazenagem (ABBOUDA
et al., 1992)

Por essa razão, no interior do silo, são instalados sistemas de ventilação que
possibilitam o controle da temperatura e umidade do ambiente. Isso é primordial para
prevenir a proliferação de fungos, pragas e insetos que podem comprometer a qualidade
dos grãos. Caso seja necessário, pode ser utilizado o controle de temperatura através do
resfriamento ou aquecimento do ar insuflado nas pilhas de grãos.

Além disso, o silo deve possuir um sistema de monitoramento constante para ve-
rificar as condições internas, como níveis de gases tóxicos, umidade e temperatura. Dessa
forma, é possível identificar qualquer problema que possa afetar os grãos armazenados e
tomar as medidas necessárias para preservar sua qualidade.

Portanto, o conhecimento da variação de temperatura e de umidade em dife-
rentes locais de uma massa de grãos, ao longo de um processo de aeração, pode
ser uma ferramenta importante no desenvolvimento e na avaliação de estra-
tégias de controle da aeração para manter os grãos sadios e reduzir os custos
com tratamento químico, direcionado para insetos e fungos. Este conhecimento
pode, também, ser usado em simulações matemáticas para validar modelos de
transferência de calor e de massa em grãos armazenados. (DEVILLA et al.,
2004, p. 285)

Dentre essas simulações matemáticas destacam-se, nesse relato, o uso das Equa-
ções Diferenciais Ordinárias (EDOs) para conhecer a variação de temperatura dentro dos
silos. Sobre essas equações, discorre-se a seguir na seção intitulada “Equações Diferenciais
: Contextualizando Historicamente”.
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2.2 EQUAÇÕES DIFERENCIAIS: A HISTÓRIA

A matemática foi criada para solucionar problemas da vida humana, desde o
cotidiano em que se observa o uso dessa ciência para determinar idade, horas, quantidade,
volume, ocupação de espaço, até problemas mais robustos como o crescimento de uma
população, financeiro de juros compostos e até mesmo a variação de temperatura de
um corpo. Os últimos citados podem ser determinados pelas, dentre muitas áreas da
matemática, Equações diferenciais Ordinárias.

Quando vemos nas primeiras disciplinas voltadas para o Cálculo Numérico, no-
tamos que as demonstrações na maioria das vezes se limitam a parte teórica das EDOS.
Uma explicação para esse fato pode ser a limitação de tempo das aulas o que limita o
conhecimento adquirido pelos estudantes. Entretanto, é importante lembrar que as EDOs
possuem diversas aplicações nas mais diferentes áreas do conhecimento, como por exemplo
na física, economia, engenharia, química, dentre muitas outras. Ou seja, essas equações
não devem ser desvinculadas de suas aplicações, pois, se feito, elas ganham o teor mera-
mente de cálculos manipuláveis sem utilidade prática. O que não é verdade, hora, prova
disso é que essa foi inventada por estudiosos que procuravam resolver os problemas que
em sua época não tinham solução.

Historicamente o cálculo diferencial foi inventado no século XVII por Isaac New-
ton e Gottfried Wilhelm Leibniz o que foi uma importante descoberta para a matemática.
Antes de Newtom e Leibniz se dedicarem ao estudo do processo de diferenciação houve-
ram outros estudiosos que contribuíram para a descoberta e o aprimoramento do método
diferencial. Dentre eles se destacam Fermat, que por volta de 1629 que através do es-
tudo do comportamento das tangentes em determinadas funções resultou em funções que
auxiliariam o cálculo das equações diferenciais (ALVES, 2022).

Outro destaque vai para os antecessores de Newton e Leibniz que foram John
Wallis e Isaac Barrow que também contribuíram para o estudo das EDOs. Wallis em
especial reservou parte de sua vida para o compreender e desenvolver teorias no campo
da integração. Barrow por outro lado escreveu o livro “Triangulo diferencial”, nessa obra
continha ideias muito semelhantes as ideias de diferenciação. Barrow também foi respon-
sável por desenvolver o teorema fundamental do cálculo (EVES, 2011) . Vale salientar que
o nesse período já se conhecia tanto o cálculo numérico quanto a integração, entretanto
era difícil definir suas nomenclaturas e padronizar seu modo de uso. E é nesse momento
que Newton e Leibniz contribuem para as definições das EDOs.

Isso aconteceu porque esses dois matemáticos fizeram com que as Edos fossem
fáceis de manipular. Boyce, DiPrima e Meade (2024, p. 19) afirma que isso se deve ao
fato de que Newton definiu as equações diferenciais de primeira ordem de acordo com as
fórmulas

∂y

∂x
= f(y),

∂y

∂x
= f(x),

∂y

∂x
= f(x, y)

Por outro lado, enquanto Leibniz estudava energia cinética descobriu o método
de separação de variáveis e o método de redução de equações homogêneas e equações
separáveis (BOYER, 2012). Depois disso, os estudos a cerca desse tema perduraram por
longos anos, tendo contribuições de nomes importantes para matemática como destaca-
se a participação dos irmãos Jakob e Johann Bernoulli que implementaram métodos de
resolução para aumentar o campo de aplicação das Edos e solucionarem problemas que
pertencem a mecânica.

Além deles, Leonard Euler “empregou a ideia de fator integrante na resolução de
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equações diferenciais, deu-nos o método sistemático usado hoje para resolver equações
diferenciais lineares com coeficientes constantes e distinguiu entre equações diferenciais
lineares homogêneas e não: homogêneas” (EVES, 2011, p. 473). Suas aplicações foram
voltadas para a hidráulica, teoria lunar e mecânica, que serviria também para aplicar na
“ciência do movimento”.

Salienta-se ainda a participação de Lagrange e Laplace. Esse último “criou teo-
remas e métodos para solucionar equações diferenciais, que contribuíram grandemente no
desenvolvimento do cálculo para ser aplicado em vários estudos, como por exemplo em
Elasticidade, Fluídos e Dinâmica entre outras áreas” (ALVES, 2022, p. 17-19).

Diante desse contexto, destaca-se que a descoberta das Equações Diferenciais foi
extremamente importante para o desenvolvimento não só da matemática mas também
para demais áreas do conhecimento, visto que, precisam de equações matemáticas que
expliquem e descrevam seus comportamentos. Assim, a seguir aborda-se as definições de
uma ED e seus principais conceitos

2.2.1 Equações Diferenciais

Uma equação que contém as derivadas ou diferenciais de uma ou mais variáveis
dependentes, em relação a uma ou mais variáveis independentes, é chamada de equação
diferencial (ED) (ALVES, 2022). De acordo com Yartey e Ribeiro (2017, p. 8) a equação
diferencial pode ser inscrita da seguinte forma:

F (x, y, y′, y′′, y′′′, . . . , y(n)) = 0

De maneira geral, as equações algébricas comuns possuem variáveis denominadas
incógnitas. Por outro lado, nas equações diferenciais, essa incógnita, em vez de ser apenas
uma variável, assume a forma de uma função y(x), sendo que x é sua variável independente.

Outro exemplo de ED:

dy

dx
= y

Na maioria dos casos o principal objetivo da equação é encontrar quem é a função
y = f(x) que satisfaça a equação, essa função é chamada solução da equação.

Dito isso, uma equação diferencial pode ser classifica, com relação ao tipo, de
duas formas, são ela: Equação Diferencial Ordinária (EDO) e Equação Diferencial Parcial
(EDP). Elas se diferenciam pois enquanto uma possui somente uma variável independente
a outra tem mais de uma variável independente respectivamente. Corrobora Yartey e
Ribeiro (2017):

Definição 1.1.2. Quanto ao número de variáveis independentes, as equações
diferenciais podem ser ordinárias ou parciais. Uma equação diferencial é or-
dinária (EDO) se a função incógnita for uma função de apenas uma variável.
Neste caso, as derivadas que aparecem na equação diferencial são apenas deri-
vadas ordinárias, simples. Caso contrário, as derivadas serão derivadas parciais
e aí teremos uma equação diferencial parcial (EDP). (2017, p.11)

Entretanto, esse estudo se limita ao estudo e manipulação das Equações diferen-
ciais ordinárias. Dessa forma, o próximo tópico volta-se para essas equações, buscando
conhecer as suas definições, ordens, soluções e seus principais tipos.
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2.2.2 Equações Diferenciais Ordinárias

Uma EDO é considerada ordinária quando envolve apenas uma variável indepen-
dente. Portanto, ela possui apenas uma derivada em relação a essa variável (ÁVILA,
2019). Essas equações podem ser classificadas com relação ao tipo (como visto anterior-
mente), ordem, solução e métodos de soluções.

Assim, a ordem de uma equação diferencial é a ordem da mais alta derivada que
a equação apresenta.

i. No caso da equação geral F (x, y, y′, y′′, y′′′, . . . , y(n)) = 0 a ordem é n, pois esse é a
ordem da mais alta derivada dessa equação.

ii. No exemplo exy′ = e−y+e−2x−y, é de 1o ordem pois essa é a ordem da maior derivada
dessa equação.

Já como solução, uma EDO admite a solução geral ou solução particular. A
solução geral acontece quando envolve uma constante real arbitraria. “Enquanto uma
solução particular de uma equação diferencial é a que se obtêm quando se dão, para
as constantes arbitrárias que aparecem na primitiva, valores definidos”(MOTTA, 2009,
p. 40).

Além disso, existem diversas técnicas e métodos para resolver EDOs, dependendo
da natureza da equação. Alguns métodos comuns incluem a separação de variáveis, o
método do fator integrante, a substituição de variáveis e as séries de potências. Na lei de
resfriamento de Newton, por exemplo, usa o método de separação de variáveis.

Essas equações permitem, muitas vezes, fazer previsões sobre como os proces-
sos naturais se comportarão em diversas circunstâncias. Muitas vezes é fácil
permitir a variação dos parâmetros no modelo matemático em um amplo in-
tervalo, enquanto isso poderia levar muito tempo ou ser muito caro, se não
impossível, em um ambiente experimental. (BOYCE; DIPRIMA, 2015, p. 42)

Segundo Boyce e DiPrima (2015), as Equações Diferenciais têm inúmeras formas
de aplicação, e devido a sua importância podem ser usadas em diversas áreas das ciências,
partindo de cálculos simples até atividades mais elaboradas e complexas. Serão vistas, a
seguir, algumas das aplicações das EDOs como solução de impasses do mundo real com
um exemplo prático para o caso da dinâmica populacional.

2.2.3 EDOs e Suas Aplicações

O próprio ensino da matemática, curiosamente, pode se tornar um dos principais
responsáveis pela rejeição dessa disciplina entre os estudantes. Essa afirmação parece
contraditória à primeira vista, já que o ensino, por definição, deveria facilitar o aprendi-
zado. Segundo D’Ambrosio (1986, p. 37), trata-se de “uma ação pedagógica que visa o
aprimoramento, mediante uma multiplicidade de enfoques, uma ação educativa exercida
no sistema educacional de maneira mais direta e característica.” Ou seja, espera-se que
o ensino medeie o conhecimento de forma a promover o desenvolvimento dos conceitos
matemáticos.

Diante disso, não faria sentido que o próprio ensino contribuísse para a formação
de uma visão negativa sobre a matemática — e, no entanto, é exatamente o que frequen-
temente ocorre. Isso se deve, em grande parte, aos métodos pelos quais a matemática
é tradicionalmente apresentada no sistema educacional brasileiro. Embora esse sistema
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tenha passado por aprimoramentos ao longo dos anos, o ensino da matemática ainda se
baseia, majoritariamente, em abordagens excessivamente teóricas.

É inegável que os fundamentos teóricos são essenciais para o desenvolvimento
intelectual do estudante. No entanto, é igualmente importante reconhecer que a matemá-
tica é uma ciência altamente aplicável. Reduzir seu ensino apenas à teoria e ao ambiente
restrito da sala de aula significa desconsiderar sua riqueza e funcionalidade. Por isso,
torna-se urgente desmistificar a ideia de que se trata de uma disciplina abstrata e distante
da realidade. Como afirmam Alves e Silva (2016, p. 386), “a Matemática é simples e
cotidiana, pois foi construída a partir da necessidade humana de sobreviver e dessa forma
deve ser tratada pelos professores e transmitida aos alunos”.

Reforçar a matemática como uma ciência com múltiplas possibilidades de aplica-
ção pode contribuir para uma maior valorização e engajamento dos estudantes. Afinal, é
natural que se torne desmotivador estudar algo que parece não ter utilidade prática — o
que definitivamente não é o caso da matemática. Nesse sentido, D’Ambrosio (1986, p. 36)
destaca:

[...] Isto nos conduz a atribuir à Matemática o caráter de uma atividade inerente
ao ser humano, praticada com plena espontaneidade, resultante de seu ambiente
sociocultural e consequentemente determinada pela realidade material em que
o indivíduo está inserido. Portanto, a Educação Matemática é uma atividade
social muito específica, visando o aprimoramento dessa atividade. (1986, p.36)

Dentro desse contexto, as Equações Diferenciais Ordinárias se destacam como
exemplo concreto de matemática aplicada, pois estão presentes, ainda que de forma dis-
creta, em diversos aspectos do cotidiano. Um exemplo interessante — e muitas vezes
inesperado — é a aplicação desse conteúdo no preparo de um bolo. A princípio, pode
parecer improvável associar matemática avançada a uma atividade tão comum. Afinal,
quem pode deduzir que há a possibilidade de se trabalhar equações diferenciais no preparo
de um bolo? Mas essa relação é real e fundamentada na física térmica.

A Lei de Resfriamento de Newton, sobre a qual esta pesquisa se apoia, é um
modelo clássico descrito por uma equação diferencial. Embora sua fórmula possa parecer
complexa à primeira vista, ela representa um fenômeno simples e observável: a troca de
calor entre um corpo e o meio ambiente.

Ao retirar um bolo quente do forno e colocá-lo sobre a pia, por exemplo, percebe-
se que sua temperatura diminui gradualmente até se aproximar da temperatura ambiente.
Esse comportamento é descrito pela referida lei, que estabelece que a taxa de variação
da temperatura de um corpo é proporcional à diferença entre a sua temperatura e a do
ambiente. Em outras palavras, se a temperatura do corpo é maior que a do ambiente,
ocorre um processo de resfriamento; se for menor, há aquecimento (BRONSON; COSTA,
2008).

Esse tipo de situação mostra como conceitos matemáticos aparentemente abstra-
tos podem — e devem — ser contextualizados de forma prática, tornando a aprendizagem
mais significativa e próxima da realidade dos alunos.

Observa-se que o cenário em que as EDOs foram criadas refletem sua aplicabi-
lidade prática, visto que, possuem potencial para solucionar situações reais que afetam
áreas que tramitam desde a economia até a engenharia. Assim, salienta-se para a aplicabi-
lidade desse tipo de equação em situações como dinâmica populacional, juros compostos,
variação de temperatura e dentre outras, sendo que, essa última citada trata-se do enfoque
da parte prática desse estudo.
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Na dinâmica populacional, por exemplo, as equações diferenciais ordinárias são
capazes de estimar o crescimento de uma população. As equações diferenciais ordiná-
rias (EDOs) podem ser utilizadas para modelar o crescimento populacional ao longo do
tempo, considerando variáveis como taxas de natalidade e mortalidade. Por meio dessas
equações, é possível realizar previsões demográficas e analisar as dinâmicas complexas das
populações (ROSA, 2024).

Trata-se de um modelo desenvolvido por Malthus aproximadamente no ano
de 1766. Ele pensou que, dada uma população pequena (a) e uma população
grande (b), com o passar do tempo a população b vai crescer mais que a po-
pulação a. Vale ressaltar que, em condições atípicas como guerra e pandemia,
esse modelo não se aplicará. (ROSA, 2024, p.14-18)

Dessa forma, o modelo malthusiano estabelece que a taxa de crescimento popu-
lacional em um determinado momento é proporcional à população total nesse momento.
Matematicamente, se P(t) representa a população total no instante t, o modelo contínuo
de Malthus é expresso por:

dP

dt
= kP

A aplicação dessa equação pode ser demonstrada através do exemplo a seguir:
Exemplo 01: Uma pequena cidade, tem uma população inicial de 1.000 habi-

tantes. A população dessa cidade cresce de acordo com o modelo malthusiano, que assume
que a taxa de crescimento populacional é proporcional à população existente. Neste caso,
a taxa de crescimento anual é de 5% ao ano. Sabendo disso, quantos habitantes a cidade
terá em 10 anos?

P é a população,
k é a taxa de crescimento populacional (neste caso k = 0,05),
t é o tempo em anos.
Separando as variáveis :

dP

P
= k dt

Integrando os lados e aplicando a exponencial:
∫

dP

P
=

∫

k dt

lnP = kt+ C

P = ekt+C

P = eC · ekt

Considerando que eC é uma constante e pode ser substituída pelo valor da popu-
lação inicial. Assim, eC = 1000:

P = 1000 · e0,05t

Após 10 anos (t = 10):

P = 1000 · e0,05·10

P = 1000 · e0,5
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P = 1000 · 1,6487

P = 1648,7

Dessa forma, após 10 anos a cidade possuirá aproximadamente 1.649 habitantes.
Além da solução analítica, também é possível estimar numericamente o cresci-

mento da população utilizando métodos numéricos, como o método de Euler. Neste caso,
considera-se um passo de 1 ano e aplica-se a fórmula:

Pn+1 = Pn(1 + hk)

Com P0 = 1000, h = 1 e k = 0,05, temos:

P1 = 1000 · 1,05 = 1050,00

P2 = 1050 · 1,05 = 1102,50

P3 = 1102,50 · 1,05 = 1157,63

...

P10 = 1551,34 · 1,05 = 1628,91

A resposta numérica aproxima-se bastante do valor analítico, o que reforça a
validade dos métodos computacionais para estimativas quando a solução exata não está
facilmente disponível.

Então, como demonstrado no exemplo anterior, as equações diferenciais podem
e devem ser usadas para solucionar problemas dos mais diversos campos. Portanto, são
apresentadas e utilizadas nessa pesquisa as EDOs da Lei de Resfriamento de Newton e
o método de Runge-Kutta de quarta ordem aplicados ao controle de temperatura dentro
dos silos de armazenagem de grãos.
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2.3 LEI DE RESFRIAMENTO DE NEWTON

A lei de resfriamento de Newton, formulada em 1701, foi uma significativa con-
tribuição para o estudo e comprovação das equações diferenciais. Sobre isso, corroboram
Bronson e Costa:

A Lei de Resfriamento de Newton, igualmente aplicável ao aquecimento, de-
termina que a taxa de variação temporal da temperatura de um corpo é pro-
porcional à diferença de temperatura entre o corpo e o meio circundante. Seja
T a temperatura do corpo e Tm a temperatura do meio circundante. Então, a
taxa de variação da temperatura do corpo em relação ao tempo é dT

dt
, e a Lei

de Resfriamento de Newton pode ser formulada como dT

dt
= k(T − Tm), onde

k é uma constante positiva de proporcionalidade. (BRONSON; COSTA, 2008,
p. 64)

A lei basicamente afirma que quando a temperatura do corpo é maior que a
temperatura do ambiente acontece o processo de resfriamento do corpo, e quando a tem-
peratura do corpo é menor que a temperatura do ambiente acontece o processo inverso,
ou seja, o aquecimento do corpo. Desse modo, as temperaturas tendem a se igualar pela
lei de resfriamento de Newton.

Assim, a lei do resfriamento de Newton é uma EDO que mostra a taxa de variação
de temperatura de um corpo é proporcional à diferença de temperatura entre o corpo e
o meio. Assim essa equação diferencial pode ser expressa pela fórmula (BASSANEZI et
al., 1998).

dT

dt
= −k(T − Tm) (1)

O processo de resolução dessa equação diferencial é feito utilizando o método
analítico de separação de variável. O método numérico para resolução dessa equação
diferencial, o qual é proposto nessa pesquisa é o Método de Runge-Kutta de quarta ordem
que consiste em resolver essa EDO (Equação Diferencial Ordinária) através de cálculos
numéricos. Sobre esse método discorre-se a seção a seguir (Método de Runge-Kutta de
quarta ordem).
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2.4 MÉTODO DE RUNGE-KUTTA DE QUARTA ORDEM

Kutta era um matemático alemão que trabalhava com aerodinâmica e é, também,
muito conhecido por suas contribuições importantes à teoria clássica de aerofólio (VALLE,
2012, p. 26).

De maneira simples a ideia por trás desse método é dividir o intervalo de tempo
em pequenos incrementos e usar uma combinação ponderada das derivadas em diferentes
pontos, para obter uma estimativa mais precisa do valor da função desconhecida em cada
ponto. Isso é feito através de um processo iterativo que utiliza uma série de equações de
atualização dos valores da função.

Primeiramente, são calculadas as derivadas da função em diferentes pontos do
intervalo de tempo e, em seguida, são combinadas ponderadamente para obter uma esti-
mativa do valor da função em um ponto específico. Essa combinação é calculada usando
uma fórmula que envolve coeficientes específicos conforme descritos abaixo (3).

O método de Runge-Kutta é considerado um dos mais populares, com destaque
no método de Runge-Kutta de quarta ordem que é provavelmente um dos mais precisos
para se obter soluções com valores próximos ao valor inicial (que mais se aproximam da
realidade).

O método de Runge-Kutta de quarta é descrito pelas equações abaixo relaciona-
das:

yn+1 = yn +
1

6
(k1 + 2k2 + 2k3 + k4) (2)

k1 = hf(xn, yn) (3)

k2 = hf

(

xn +
h

2
, yn +

1

2
k1

)

(4)

k3 = hf

(

xn +
h

2
, yn +

1

2
k2

)

(5)

k4 = hf(xn + h, yn + k3) (6)

O processo de resolução consiste em encontrar os valores de k1, k2, k3 e k4 e
substituí-los na equação (1). Assim, é preciso ter cuidado pois analisando as fórmulas é
possível perceber que o valor de k2 depende de k1, k3 depende de k2 e k4 depende de k3,
dessa forma, k1 torna-se a única variável independente da equação. Além disso, envolvem
aproximações das inclinações no ponto médio do intervalo entre xn e xn+1. Devido ao
grau de complexidade é recomendado que “os procedimentos numéricos sejam executados,
em computadores e, também, em algumas calculadoras” (VALLE, 2012, p. 13). Seguindo
essa recomendação os cálculos desse trabalho serão desenvolvidos por um algoritmo em
python, conforme descrito nos procedimentos metodológicos a seguir.
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3 PROCEDIMENTOS METODOLÓGICOS

Segundo escreveu Minayo (2002, p. 16) a “Metodologia é o caminho do pensa-
mento e a prática exercida na abordagem da realidade, incluída de concepções teóricas de
abordagem, o conjunto de técnicas que possibilitam a construção da realidade e o sopro
divino do potencial criativo do investigador”. Com base nisso, para escolha da metodo-
logia dessa pesquisa observou-se que para comparar o método numérico de Runge-Kutta
de quarta ordem e a solução analítica para a EDO da Lei de Resfriamento de Newton foi
preciso conhecer essa lei e método.

Nesse sentido, para atender os objetivos e a discussão proposta nesta pesquisa,
o estudo planejado foi realizado em âmbito de revisão bibliográfica e de análise de coleta
de dados de pesquisas empíricas.

A escolha pelo método de pesquisa bibliográfica deu-se pela necessidade de inves-
tigar o que já foi estudado sobre as questões relacionadas a ambos os métodos e o processo
de implementação do código em Python. Sobre esse tipo de pesquisa Gil (2002, p. 44)
corrobora dizendo:

A pesquisa bibliográfica é desenvolvida com base em material já elaborado,
constituído principalmente de livros e artigos científicos. Embora em quase to-
dos os estudos seja exigido algum tipo de trabalho dessa natureza, há pesquisas
desenvolvidas exclusivamente a partir de fontes bibliográficas.

Assim, a pesquisa foi dividida em três partes, sendo a primeira destinada a revisão
bibliográfica acerca do tema, a segunda ao desenvolvimento do código que executa os
procedimentos numéricos e na terceira parte foi realizada a coleta de dados no grupo de
agronegócio em que os silos foram observados.

Figura 1: Silo de armazenagem de grãos

Fonte: Autor, 2024
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Realizada a pesquisa na literatura, o estudo se direcionou ao desenvolvimento
do código que executa o método numérico de quarta ordem de Runge-Kutta e a solução
analítica da lei de resfriamento de Newton.

Com a implementação do código, foi realizado os cálculos comparativos entre os
dois métodos para gerar os resultados que serão avaliados quanto a eficiência e os possíveis
erros produzidos em cada método. A coleta de dados dos silos foi realizada no grupo de
agronegócio Maranata, de posse de todas essas informações, será rodado um comparativo
em ambos os métodos relacionando sua eficácia.

A coleta de dados foi realizada no dia 15 de janeiro de 2024. O silo em que
houve a coleta de dados servia para o armazenamento de milho, ele contém em sua
estrutura interna cinco pêndulos, esses cabos de metal são compostos por seis sensores
de temperatura organizados de dois em dois metros contando de baixo para cima. Esses
pêndulos vão medir a temperatura ao longo dos silos, possibilitando o monitoramento
mais preciso. Conforme ilustra a imagem a seguir:

Figura 2: Disposição dos pêndulos no silo

Fonte: Oliveira, 2019

Usando os sensores, as primeiras temperaturas do dia são registradas e classifi-
cadas às 08:00 horas. Esse processo é repetido em outras horas do dia, são elas: 09:00,
11:00, 13:00, 15:00 e 17:00. Conforme mostrado na figura abaixo:
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Figura 3: Temperaturas registradas pelos sensores as 08:00, 9:00 e 11:00 da manhã

Fonte: Sistema de Controle de Termometria – Agro: Maranata, 2024

A análise termométrica realizada no Silo-1, em 15/01/2024 às 08:00, evidenciou
temperaturas médias elevadas, variando entre 31°C e 35°C. Observa-se que os cabos 3T
a 5T apresentam sensores com temperaturas superiores a 34°C, alcançando até 36°C em
S6. Esses dados indicam um possível início de aquecimento localizado. Essas observações
foram consideradas para elaboração dos dados reais apresentados nos gráficos.
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A seguir serão exibidas as temperaturas registradas pelos sensores no período de
13:00 horas até as 15:00 horas da tarde.

Figura 4: Temperaturas registradas pelos sensores as 13:00, 15:00 horas

Fonte: Sistema de Controle de Termometria – Agro: Maranata, 2024

Por fim, na Figura 5, são apresentadas as temperaturas registradas pelos sensores
as 17:00 horas da tarde, finalizando o dia e as observações do silo.

Figura 5: Temperaturas registradas pelos sensores as 17:00 horas

Fonte: Sistema de Controle de Termometria – Agro: Maranata, 2024
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Essa coleta de dados fomentará a comparação entre as EDOs mencionadas nessa
pesquisa. De posse das temperaturas medidas dentro do silo e seus respectivos horários,
foi possível calcular a constante de proporcionalidade “k” (1) descrita pela equação que
rege a lei de resfriamento de Newton.

Além da coleta de dados e do desenvolvimento da rotina computacional, este tra-
balho foi apresentado a um grupo de estudantes dos cursos de Matemática Licenciatura
e Agronomia da Universidade Estadual do Maranhão. A apresentação teve como obje-
tivo evidenciar a aplicabilidade dos conhecimentos matemáticos adquiridos ao longo da
formação, destacando sua importância para a compreensão de fenômenos reais e para o
desenvolvimento econômico e social do município.

A exposição foi realizada no dia 14 de maio de 2025, durante a feira de agro-
negócios Agrobalsas, na Fazenda Sol Nascente, localizada no município de Balsas-MA.
Reconhecida como o maior evento de agronegócio do estado do Maranhão, a feira tem
como objetivo promover o desenvolvimento sustentável, integrando tecnologia, inovação
e responsabilidade ambiental ao setor agroindustrial.

Dada essas informações, a seguir, na seção “Resultados e Implicações Práticas”
serão apresentados os gráficos e demais resultados que puderam ser analisados durante
essa pesquisa.
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4 RESULTADOS E IMPLICAÇÕES PRÁTICAS

Em decorrência da quantidade de dados a serem manipulados para que haja a
simulação da temperatura dentro dos silos, foi desenvolvida uma rotina no Vscode (Visual
Studio Code) usando os dados coletados no silo durante a visita ao grupo de agronegócio
Maranata.

A rotina desenvolvida mediante a modelagem matemática e através do método
numérico de Runge-Kutta de quarta ordem e dos resultados obtidos da solução analítica
para da Lei de resfriamento de Newton, tem como objetivo analisar precisamente a tem-
peratura no interior dos silos, além disso, através da análise será possível determinar qual
dos dois métodos resultam em valores mais próximos da realidade.

Essa comparação será possível através da construção de gráficos que apresentem
de forma simples os resultados obtidos nos dois métodos utilizados. A construção desses
gráficos foi possível com o uso da biblioteca “matplotlib” na própria rotina desenvolvida.

Manipular todos os dados torna-se um trabalho complexo para uma pessoa já
que é necessária muita atenção, pois as variáveis dependem uma das outras. Assim como
já foi relatado no desenvolvimento desse trabalho as equações diferenciais ordinárias tem
como principal característica o uso de apenas uma variável independente. Por essa razão,
a biblioteca Numpy foi utilizada para manipulação dos dados numéricos do código.

A rotina desenvolvida.

1 import numpy as np

2 from matplotlib import pyplot as plt

3

4 xt =[1,2,3,4,5,6]

5 yT = [31 ,31 ,32 ,32 ,31 ,31]

6

7 Tm = 36

8 c = -5

9 k = 0.0744

10 Temp = []

11

12 for t in range (1,7,1):

13 T = Tm + c*np.exp(-k*t)

14 Temp.append(T)

15 tempo = np.arange (1,7,1)

16

17 k = 0.0744

18 xT = 31

19 yTm = 36

20 h = 1

21 Temp_Kutta = []

22

23 def kutta(xT, yTm):

24 RK = -k*(xT - yTm)

25 return RK

26

27 for n in range (1,7,1):

28 k1 = kutta(xT,yTm)

29 k2 = kutta(xT+(h/2), yTm+(h/2)*k1)

30 k3 = kutta(xT+(h/2), yTm+(h/2)*k2)

32



31 k4 = kutta(xT+h, yTm+(h*k3))

32 xT = xT + ((h/6)*(k1 + 2*k2 + 2*k3 + k4))

33 Temp_Kutta.append(xT)

34

35 plt.plot(xt ,yT,’*-’,label=’Dados reais’,color=’c’)

36 plt.plot(tempo , Temp ,’*-’, label=’ E q u a o A n a l t i c a ’, color=’b’)

37 plt.plot(tempo , Temp_Kutta ,’*-’, label=’ M t o d o de Runge -Kutta’,

color=’r’)

38 plt.xlabel(’Horas’)

39 plt.ylabel(’Temperatura ( C )’)

40 plt.legend(loc = 5)

41 plt.grid()

42 plt.show()

Listing 1: Rotina Python para comparação da equação analítica e método de Runge-Kutta

A variável denominada “yT” no código recebe as temperaturas registradas pelos
sensores dentro do silo. Enquanto, “Tm” recebe a temperatura ambiente e “xT” recebe
a temperatura inicial do corpo. Já os parâmetros “k” e “C” são previamente calculados
(7) e utilizados na equação diferencial do resfriamento de Newton pelo método analista e
pelo numérico de Runge-Kutta.

Analisando as temperaturas registradas pelos sensores nas primeiras horas do
dia, tem-se que 31° graus foi a primeira temperatura registrada no sensor um (figura
3). Portanto essa foi considerada a temperatura do corpo. Ademais, são 36° graus para
temperatura ambiente, e considerando o tempo de 3 horas ( que equivale ao período das
08:00 horas até as 11:00 horas) tem-se o valor de k igual a 0,0744. Conforme demonstra
o cálculo a seguir:

T = Tm + Ce−kt (7)

Sabemos que a temperatura inicial é T (0) = 31 ◦C e a temperatura do meio é
Tm = 36 ◦C. Assim:

T = Tm + Ce−kt

31 = 36 + C

C = −5

Após 3 horas:

T (3) = 36− 5e−3k = 32

32 = 36− 5e−3k

−4 = −5e−3k

4

5
= e−3k

−3k = ln

(

4

5

)

k =
ln(0,8)

−3

k = 0,0744
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k = 0,0744 (8)

A partir dos dados de temperatura obtidos de cada sensor através do dispositivo
instalado no silo, foram calculados os parâmetros “C” e “k”, que são utilizados na equação
diferencial do resfriamento de Newton (1). Esse valor de “k” e os demais dados são adici-
onados a rotina programada em python, para que assim possam ser rodados e resolvidos,
tanto com a solução analítica para lei de resfriamento de Newton quanto com método
numérico de Runge-Kutta de quarta ordem. Dessa forma, os resultados da comparação
podem ser vistos no gráfico a seguir:

Figura 6: Comparação (considerando o período das 08:00 às 11:00 da manhã) entre o método
numérico de Runge-Kutta de quarta ordem e a solução analítica para a EDO da lei de
resfriamento de newton.

Fonte: Autor, 2024

Dito isso, inicialmente foram considerados três cabos com sensores de tempera-
tura, foram eles: (1T), (2T) e (5T). A média das temperaturas registradas pelos seis
sensores em cada um dos cabos serviram de parâmetro para construção dos gráficos que
vão comparar os dois métodos. Desse modo, na tabela abaixo estão as médias dos senso-
res da temperatura do Cabos (1T), (2T) e (5T) nos períodos do dia: 08:00, 09:00, 11:00,
13:00, 15:00, 17:00.
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Tabela 1: Média dos sensores de temperatura nos cabos (1T), (2T) e (5T).

Horas Temperatura

1T 2T 5T

08:00 h 32.7 33.2 33.7

09:00 h 32.3 34.2 35.2

11:00 h 32.3 35.0 36.3

13:00 h 32.7 35.0 37.0

15:00 h 32.3 33.2 35.5

17:00 h 32.0 32.5 35.5

Fonte: Autor, 2024.

Ao examinar as temperaturas registradas pelos sensores no cabo (1T), observou-
se que a temperatura inicial do corpo foi de 32,7°C (veja tabela 1). AlémS disso, a
temperatura ambiente foi de 36°C, e dessa vez foi considerado o intervalo de 3 horas
equivalente ao terceiro tempo/ dado da tabela. Dados os valores de k e C, o gráfico
resultante da comparação pode ser visto a seguir:

Figura 7: Comparação entre o método numérico de Runge-Kutta de quarta ordem e a solução
analítica para a EDO da lei de resfriamento de newton, considerando as médias de temperatura
do cabo (1T).

Fonte: Autor, 2024
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Os gráficos apresentados demonstram que a diferença entre os dois métodos é
mínima, entretanto não há dúvidas que o método numérico de Runge-Kutta de quarta
ordem resultou em valores mais próximos as temperaturas reais captadas pelos sensores.

Nos sensores do cabo 2T a temperatura inicial do corpo era de 33,2°C (conforme
mostrado na tabela 1) e a temperatura ambiente permanece medindo 36°C. O intervalo
considerado foi de 3 horas, correspondente ao terceiro tempo da tabela, o valor calculado
para “k” foi 0,3405, enquanto “C” vale -2,8.

Observa-se que a variação na temperatura nos dados reais acontece porque os
dispositivos de resfriamento nos silos são ativados para resfriar os grãos. Dessa forma, os
dados mostram uma diminuição na temperatura registrada pelos sensores, como demons-
tra a área sinalizada pela cor amarela no gráfico das médias das temperaturas registradas
pelos sensores do cabo 2T. Os dados são apresentados a seguir:

Figura 8: Comparação entre o método numérico de Runge-Kutta de quarta ordem e a solução
analítica para a EDO da lei de resfriamento de newton, considerando as médias de temperatura
do cabo (2T).

Fonte: Autor, 2024

No cabo 5T as temperaturas voltaram a subir. O que se observa é que o mé-
todo de resolução analítico, está mais próximo dos dados reais quando a temperatura
alcança o nível mais alto. Apesar disso, o método numérico de Runge-Kutta chega mais
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perto nos outros momentos, chegando a medir precisamente as últimas duas temperaturas
registradas pelos sensores.

Figura 9: Comparação entre o método numérico de Runge-Kutta de quarta ordem e a solução
analítica para a EDO da lei de resfriamento de newton, considerando as médias de temperatura
do cabo (5T).

Fonte: Autor, 2024

Na tabela a seguir foram considerados os cabos (3T) e (4T) . As médias das
temperaturas registradas pelos seis sensores de cada cabo foram utilizadas como base
para a elaboração dos gráficos que irão comparar os dois métodos. Conforme a tabela
ilustra:

Tabela 2: Média dos sensores de temperatura nos cabos (3T) e (4T).

Horas Temperatura

3T 4T

08:00 h 33.0 32.8

09:00 h 32.7 32.5

11:00 h 32.5 32.0

13:00 h 32.8 32.7

15:00 h 32.3 32.0

17:00 h 32.5 31.8

Fonte: Autor, 2024.
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No cabo 3T a temperatura inicial foi de exatamente 33° C, de posse dessa infor-
mação os valores de c e k foram encontrados, sendo respectivamente -3 e aproximadamente
0,0494.

Ambos os métodos, analítico e numérico, demonstraram excelente aderência aos
dados reais até a quarta hora. A partir da quinta hora, pequenas divergências come-
çam a ser observadas, mas ainda assim os métodos mantêm comportamento semelhante,
acompanhando a tendência de queda apresentada pelos dados medidos.

Nota-se ainda que o método de Runge-Kutta apresenta uma aproximação muito
próxima da solução analítica, validando sua eficácia para a modelagem da variação de
temperatura no silo de grãos. O gráfico resultante da análise da variação de temperatura
através das EDOs pode ser visto a seguir:

Figura 10: Comparação entre o método numérico de Runge-Kutta de quarta ordem e a
solução analítica para a EDO da lei de resfriamento de newton, considerando as médias de
temperatura do cabo (3T).

Fonte: Autor, 2024

O próximo gráfico apresenta a comparação entre os dados reais de temperatura
coletados no cabo 4T, os valores obtidos por meio da equação analítica da Lei de Res-
friamento de Newton e os resultados gerados pelo método numérico de Runge-Kutta de
quarta ordem.

Observa-se que a média das temperaturas iniciais no cabo 4T foi ligeiramente
inferior à do cabo 3T, com uma diferença de aproximadamente 0,2◦C, sendo a temperatura
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inicial considerada 32,8◦C. A partir dessa condição inicial, obteve-se o valor de C = −3,2,
e o coeficiente de resfriamento foi calculado como k ≈ 0,0744.

Figura 11: Comparação entre o método numérico de Runge-Kutta de quarta ordem e a
solução analítica para a EDO da lei de resfriamento de newton, considerando as médias de
temperatura do cabo (4T).

Fonte: Autor, 2024

Nota-se que, ao longo do tempo, ambas as abordagens apresentam comporta-
mento semelhante à curva real, especialmente entre as três primeiras medições.

Entretanto, nas duas últimas observações (referentes às temperaturas de 31,8°C
a 33,9°C), observa-se um desvio significativo entre os modelos teóricos e os dados empí-
ricos. Essa discrepância pode ser atribuída a fatores externos que influenciam a dinâmica
térmica no interior do silo, como variações ambientais (temperatura externa, incidência
solar, fluxo de ar ou umidade), que não são considerados na rotina python adotada.

Além disso, o acionamento de sensores e possíveis oscilações operacionais no sis-
tema de termometria durante esses horários podem ter impactado a leitura. Cabe destacar
que os modelos utilizados assumem condições ideais e uniformes, enquanto o ambiente real
do armazenamento é complexo e sujeito a interferências físicas não modeladas.

Em função disso, o gráfico evidencia a limitação dos modelos analíticos e numé-
ricos quando aplicados a sistemas reais sem ajuste dinâmico de parâmetros ou inclusão
de variáveis ambientais.
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Ainda assim, o método de Runge-Kutta mostrou maior aproximação ao com-
portamento real na maioria dos pontos, reforçando sua eficácia em simulações de curto
prazo. Dito isso, na tabela a seguir os valores aproximados obtidos pelas EDOs podem
ser comparados com os dados reais do relatório de termometria.

Tabela 3: Valores das temperaturas reais comparadas às temperaturas previstas
pela equação Analítica e o método de Runge-Kutta no cabo (4T).

Dados reais Equação analítica Método de Runge-Kutta

32.8 33.0 32.0

32.5 33.2 32.3

32.0 33.4 32.5

32.7 33.6 32.75

32.0 33.8 33.0

31.8 33.9 33.2

Fonte: Autor, 2024.

Os resultados demonstram que, ao aplicar a equação diferencial da Lei do Res-
friamento de Newton, é possível determinar as temperaturas no interior dos silos. Além
disso, o método numérico de Runge-Kutta de quarta ordem revelou-se mais preciso do
que o método analítico, uma vez que se aproximou mais dos dados reais.

4.1 Resultados da Apresentação Pública

Durante a exposição da pesquisa na feira Agrobalsas, o trabalho foi apresentado a
discentes dos cursos de Matemática Licenciatura e Agronomia da Universidade Estadual
do Maranhão. A recepção foi surpreendentemente positiva, principalmente por parte dos
alunos de Matemática, que se mostraram espantados ao perceber como a matemática
está diretamente relacionada ao setor do agronegócio, um campo até então considerado
distante da sua área de formação.

Muitos estudantes relataram entusiasmo em compartilhar a experiência com seus
futuros alunos, enxergando na proposta uma oportunidade concreta de ensinar conteúdos
matemáticos de forma prática e contextualizada. Uma das perguntas feitas por um aluno
do quinto período de Matemática evidencia essa descoberta: “Como você se inspirou a

estudar isso? Tipo, como descobriu que a matemática estava escondida no silo?”.
Essa indagação revelou que, mesmo entre graduandos em Matemática, ainda

existe uma limitação quanto à percepção das aplicações práticas da ciência matemática.
A ideia predominante ainda está centrada na utilização de fórmulas para resolução de
provas e exames, em vez da exploração de contextos reais e interdisciplinares.

A apresentação gerou um debate produtivo, no qual muitos participantes expres-
saram surpresa ao descobrir que equações diferenciais ordinárias podem ser aplicadas à
medição da temperatura em silos de grãos. O seminário cumpriu seu propósito de de-
monstrar a aplicabilidade da matemática em problemas reais, promovendo reflexões sobre
o ensino tradicional e reforçando o papel da modelagem matemática como ferramenta
educativa e tecnológica. Após a experiência, tornou-se evidente que a pesquisa representa
não apenas uma contribuição acadêmica, mas também um avanço significativo para o
município e para a modernização das metodologias de ensino da matemática.
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5 ANÁLISE CONCLUSIVA

Compreender como a temperatura e a umidade variam em diferentes regiões de
uma massa de grãos durante o armazenamento é fundamental para desenvolver estraté-
gias eficazes de controle da aeração. Esse conhecimento contribui para a conservação da
qualidade dos grãos e para a redução dos custos com tratamentos químicos destinados ao
combate de insetos e fungos.

Neste contexto, esta pesquisa teve como objetivo geral realizar uma análise com-
parativa entre os resultados obtidos pelo método numérico de Runge-Kutta de quarta
ordem e pela solução analítica da equação diferencial que expressa a Lei de Resfriamento
de Newton. Por meio da análise dos dados termométricos captados em um silo de grãos e
da simulação computacional desenvolvida em Python, foi possível avaliar o desempenho
de ambos os métodos na estimativa da temperatura interna do silo.

Os resultados demonstram que o método analítico apresenta uma solução direta
e exata, porém depende da possibilidade de resolução explícita da equação diferencial. Já
o método de Runge-Kutta, embora mais complexo e computacionalmente mais exigente,
mostrou-se mais flexível e aplicável a uma variedade maior de problemas, inclusive aqueles
em que a solução analítica não é viável.

No presente estudo, observou-se que o método numérico de Runge-Kutta de
quarta ordem produziu estimativas mais próximas dos dados reais obtidos pelos sen-
sores no silo, apresentando, portanto, maior precisão. Isso evidencia a eficácia do método
numérico em situações práticas, onde perturbações no modelo ou variações não previstas
podem comprometer a aplicação da solução analítica.

Adicionalmente, o bom funcionamento da rotina computacional desenvolvida no
Visual Studio Code confirma que o algoritmo implementado é eficiente, apresentando
execução estável e resultados confiáveis. A simulação realizada permitiu ainda identificar
os períodos mais adequados para o acionamento dos exaustores, contribuindo para um
melhor controle da temperatura e, consequentemente, para a preservação da qualidade
dos grãos armazenados.

Assim, conclui-se que a modelagem matemática, aliada ao uso de métodos numé-
ricos e ferramentas computacionais, constitui uma estratégia poderosa para a resolução de
problemas reais no setor agroindustrial, evidenciando a relevância da matemática aplicada
para o desenvolvimento tecnológico e econômico do município e da região.
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ANEXOS

Figura 12: Apresentação da pesquisa no stande da Uema – Evento Agrobalsas

Fonte: Autor, 2025
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