UNIVERSIDADE ESTADUAL DO MARANHÃO CENTRO DE CIÊNCIAS TECNOLÓGICAS CURSO DE ENGENHARIA DE COMPUTAÇÃO

UNIVERSIDADE VOIP: DO LEGADO ÀS REDES TOTALMENTE IP

DANIEL GUSMÃO PEREIRA

SÃO LUÍS - MA 2025 UNIVERSIDADE ESTADUAL DO MARANHÃO CENTRO DE CIÊNCIAS EXATAS E TECNOLOGIA CURSO DE ENGENHARIA DA COMPUTAÇÃO

DANIEL GUSMÃO PEREIRA

UNIVERSIDADE VOIP: DO LEGADO ANALÓGICO ÀS REDES TOTALMENTE IP

Trabalho apresentado ao curso de Mestrado Profissional em Engenharia da Computação e Sistemas na Universidade Estadual do Maranhão como pré-requisito para obtenção do título de Mestre sob orientação do Prof. Dr. Carlos Henrique Rodrigues de Oliveira.

P436u Pereira, Daniel Gusmão.
Universidade VoIP: do legado às redes totalmente IP / Daniel
Gusmão Pereira. - São Luís, 2025.
83 folhas

Dissertação (Mestrado Profissional em Engenharia de Computação e Sistemas) - Universidade Estadual do Maranhão, 2025.

Orientador: Prof. Dr. Carlos Henrique Rodrigues de Oliveira.

1.Universo VoIP. 2.Inovadora solução. 3.Telefonia analógica. 4.Telefonia IP. 5.Integração das telefonias. I.Título.

CDU: 004.77:621.395

Elaborado por Giselle Frazão Tavares - CRB 13/665

DANIELGUSMÃOPEREIRA

UNIVERSIDADE VOIP: DO LEGADO ANALÓGICO ÀS REDES TOTALMENTE IP

Dissertação apresentada ao Mestrado Profissional em Engenharia da Computação e Sistemas (PECS) da Universidade Estadual do Maranhão, como registro para obtenção do grau de Mestre em Engenharia de Computação e Sistemas.

Trabalho aprovado. São Luís - MA, 28 de fevereiro de 2025.

Dr. Carlos Henrique Rodrigues de Oliveira

Orientador

Prof. Dr. Reinaldo de Jesus da Silva

Primeiro Membro

Documento assinado digitalmente RAFAEL MARTINS DA CRUZ Data: 01/04/2025 07:43:44-0300 Verifique em https://validar.iti.gov.br

Me. Rafael Martins da Cruz

Segundo Membro

AGRADECIMENTOS

Primeiramente a Deus pela oportunidade e sabedoria no decorrer desta etapa, em segundo lugar aos meus pais Roque Pereira e Maria de Fátima Gusmão Pereira por serem meu alicerce e pelo grande esforço para proporcionar sempre o melhor a mim.

À minha querida irmã (*In memoriam*), Thalita Guimarães Pereira que sempre me incentivou a acreditar nos meus sonhos e correr atrás de meus objetivos.

À minha amada esposa, Eulália Tamiles Silva Lima Gusmão pela compreensão, cuidado e incentivo constante em meus estudos e vida profissional.

À minha tia, Meiry Lourdes Gusmão da Rocha, por sempre me incentivar na minha formação e desenvolvimento.

À minha avó Sebastiana Borges Pereira por ser o exemplo de superação e luta que sempre me espelhei.

Agradeço também pela vida dos meus colegas de trabalho, Marcus Vinicius Araujo da Costa e Hélio Andrade da Silva Junior, e, em especial, ao meu chefes, Marco Antonio Goiabeira Torreão Filho e Thamara de Paula Reis Sousa Pires, pela compreensão e auxílio em um momento tão importante da minha vida.

Ao meu orientador, Professor Dr. Carlos Henrique Rodrigues de Oliveira, pela oportunidade que me deu para participar do projeto Universo VoIP e por toda motivação que me deu para sempre buscar mais, além de sua excelente orientação.

Aos meus queridos amigos, Danilo Dias Braga e Carlos Adriano Santana Silva pelo companheirismo e apoio.

Aos integrantes do projeto Universidade VoIP, pela ajuda e suporte no meu trabalho.

RESUMO

Dando continuidade à pesquisa sobre a Universidade VoIP, este trabalho ampliou sua aplicação para instituições do setor público, com foco no E-TEC e no IFMA - Campus Avançado de Rosário. O estudo buscou demonstrar a viabilidade da telefonia IP nesses ambientes, considerando a necessidade de adaptação da telefonia analógica, ainda presente em diversas localidades. Para isso, foi implementado e testado o Asterisk em dois sistemas operacionais distintos, Windows e Linux, avaliando sua funcionalidade em diferentes plataformas. Além disso, foi desenvolvido um aplicativo baseado em tecnologia *no-code*, permitindo o envio de mensagens, audioconferência e videoconferência. Como resultado, obteve-se um servidor VoIP funcional e adaptável tanto para redes locais (LAN) quanto para redes de longa distância (WAN), garantindo a comunicação eficiente entre sistemas legados e infraestrutura IP. A solução demonstrou que a telefonia IP pode ser integrada de forma progressiva, preservando a conectividade e ampliando as possibilidades de comunicação institucional. Com isso, reafirma-se o potencial da telefonia IP com uma alternativa moderna e acessível para a evolução dos sistemas de comunicação.

Palavras-chave: Telefonia IP; VoIP; Asterisk; No-code; Infraestrutura de comunicação; Redes LAN e WAN.

ABSTRACT

Continuing the research on Universidade VoIP, this study expanded its application to public sector institutions, focusing on E-TEC and IFMA - Advanced Campus of Rosário. The study aimed to demonstrate the feasibility of IP telephony in these environments, considering the need for adaptation of analog telephony, which is still present in various locations. To achieve this, Asterisk was implemented and tested on two different operating systems, Windows and Linux, evaluating its functionality on different platforms. Additionally, a no-code based application was developed, enabling messaging, audio conferencing, and video conferencing. As a result, a fully functional VoIP server was obtained, adaptable to both local networks (LAN) and wide-area networks (WAN), ensuring efficient communication between legacy systems and IP infrastructure. The solution demonstrated that IP telephony can be progressively integrated, preserving connectivity and expanding institutional communication possibilities. Thus, the potential of IP Telephony is reaffirmed as a modern and accessible alternative for the evolution of communication systems.

Keywords: IP Telephony; VoIP; Asterisk; No-code; Communication Infrastructure; LAN and WAN Networks.

LISTA DE FIGURAS

Figura 1. Tela inicial do softphone	30
Figura 2. Lista de Usuário do Aplicativo VoIP Gov MA	32
Figura 3. Teste de eco no Aplicativo VoIP Gov MA	33
Figura 4. Chamadas recentes VoIP Gov MA	34
Figura 5. Lista de Contatos do Aplicativo VoIP Gov MA	35
Figura 6. Usuário registrado no Aplicativo VoIP Gov MA	36
Figura 7. Extensão de Visibilidade no Aplicativo VoIP Gov MA	37
Figura 8. Janela Inicial do Webphone VoIP Gov MA	37
Figura 9. Chamadas Recentes do Webphone VoIP Gov MA	38
Figura 10. Teste de eco do Webphone VoIP Gov MA	38
Figura 11. Chamada Recebida do Webphone VoIP Gov MA	39
Figura 12. Aguardando nova chamada do webphone VoIP Gov MA	39
Figura 13. Usuário registrado do webphone VoIP Gov MA	40
Figura 14. Extensões de usuários do webphone VoIP Gov MA	40
Figura 15. Extensão de visibilidade do webphone VoIP Gov MA	40

Figura 16. Topologia do Projeto VoIP Pitágoras.	42
Figura 17. Tela de Apresentação do Aplicativo	42
Figura 18: Serviço web VoIP Valen para extensões de teste	44
Figura 19: Topologia do projeto VoIP eTEC. Fonte: Projeto VoIP UEMA	45
Figura 20: Teste de conceito do Projeto VoIP eTEC	46
Figura 21: Tela com Ramais Configurados no IFMA Campus Avançado de Rosário	50
Figura 22: ATA PAP2T Linksys Adaptador VoIP	52
Figura 23: Roteador Mercusys MW301R	53
Figura 24: Telefone IP Yealink	54
Figura 25: Softphone MicroSIP aberto para Windows	55
Figura 26: Lista de VLANs da Rede Local	56
Figura 27: Configuração da Interface RNPs (WAN)	57
Figura 28: Configuração da Interface LAN	57
Figura 29: Tela de login do Aplicativo Bubble	60
Figura 30: Tela de Cadastro	61
Figura 31: Tela de Recuperação de Senha	62
Figura 32: Link Enviado para Recuperação de Senha	63
Figura 33:Tela de Reset de Senha	63
Figura 34: Tela para Envio de Mensagem SMS	64
Figura 35: Plugin Twilio	66
Figura 36: Configuração de Evento em "Enviar SMS"	66
Figura 37: Configuração do Plugin Twilio	67
Figura 38: Tela Inicial do Twilio	68
Figura 39: Comprovante de envio de mensagens SMS	69
Figura 40: Tela de videoconferência	70
Figura 41: Tela de videoconferência do lado do convidado	71
Figura 42: Implementação da daily no Bubble	72

Figura 43: Tabela de Conversas	72
Figura 44: Tabela de Mensagens	73
Figura 45: Envio de Mensagem Entre Usuários	73
Figura 46: Estrutura do chat no Bubble	74
Figura 47: Comprovante de solicitação de Registro de Software	75

LISTA DE TABELAS

Tabela 1. Comparativo com Três Pesquisas Distintas	28
Tabela 2. Lista de VLANs de Rede Local	55

LISTA DE ABREVIATURAS E SIGLAS

AM	Modulação em Amplitude			
API	Conjunto de Interfaces de Programação de Aplicativos			
AP	Ponto de Acesso			
ARPANE	Γ Rede de Agência de Projetos de Pesquisa Avançada			
ATA	Adaptador de Telefone Analógico			
ССТ	Centro de Ciências Tecnológicas			
E-TEC	Escola Técnica Estadual			
EUA	Estados Unidos da América			
FAQ	Perguntas Frequentes			
FDM	Multiplexação por Divisão de Frequência			
FM	Modulação em Frequência			
FXO	Escritório de Câmbio			
FXS	Estação de Troca Externa			
GSM	Sistema Global para Comunicações Móveis			
IDE	Ambiente de Desenvolvimento Integrado			
IFMA	Instituto Federal de Educação, Ciência e Tecnologia do Maranhão			
IA	Inteligência Artificial			
IOS	Sistema Operacional do iPhone			
IP	Protocolo de Internet			
LAN	Rede de Área Local			
OFDM	Multiplexação por Divisão de Frequência			
NAT	Tradução de Endereços de Rede			
NTI	Núcleo de Tecnologia de Informação			
PABX	Troca Automática entre Ramais Privados			
PON	Rede Óptica Passiva			
POTS	Sistema de telefonia tradicional			
PSTN	Rede Telefônica Pública Comutada			
QOS	Qualidade de Serviço			
RTP	Protocolo de Transporte em Tempo Real			
SIGAA	Sistema Integrado de Gestão das Atividades Acadêmicas			
SIGUEMA	A Sistema Integrado de Gestão de Atividades			
SIP	Protocolo de Iniciação de Sessão			

SRTP	Protocolo de Transporte Seguro em Tempo Real
SSID	Identificador do Conjunto de Serviço
TDM	Multiplexação por Divisão de Tempo
TV	Televisão
UEMA	Universidade Estadual do Maranhão
VoIP	Voz Sobre Protocolo de Internet
WAN	Rede de Área Ampla
WDM	Multiplexação por Divisão de Comprimento de Onda

SUMÁRIO

1. INTRODUÇÃO	16
1.1. Objetivos	17
1.1.1. Objetivo Geral	17
1.1.2. Objetivos Específicos	17
1.2. Metodologia	18
1.3. Justificativa	19
1.4. Aplicabilidade	19
1.5. Estrutura do documento	19
2. FUNDAMENTAÇÃO TEÓRICA	20
2.1. Telefonia analógica	21
2.1.1 Vantagens	21
2.1.2 Desvantagens	22
2.2. TDM	22
2.3. Telefonia IP	24
2.4. Portas físicas FXS e FXO	25
2.5. Trabalhos Correlatos	26
3. DESENVOLVIMENTO	29
3.1. VoIP Uema	29
3.2. VoIP Gov MA	31
3.3. VoIP Pitágoras	40
3.4. VoIP eTec	42
3.5. VoIP Valen	45
3.6. Integração com a rede legada	46
4. Implantação no IFMA Campus Avançado de Rosário e Laboratório de Telecomunica	ção do
ССТ	47
4.1 Testando a Implantação em Redes Diferentes	55
4.2. Quais as portas usadas no Firewall	58
5. Teste de No-Code para Implantação do VoIP	59
5.1 Qual foi a plataforma utilizada?	55
5.1.1 Tela Inicial da Aplicação VoIP	60
5.1.2 Tela de Cadastro	60
5.1.3 Tela de Recuperação de Senha	61

5.2 Tela de Envio de Mensagem	63
5.2.1 Qual foi a API utilizada?	64
5.2.2 Como o Twilio foi incorporado no Bubble?	65
5.2.3 Leque de Opções do Twilio visto do Bubble	65
5.2.4 Editando Fluxo de Trabalho através do Botão "Enviar SMS"	66
5.2.5 Como obter o número através da ferramenta Twilio?	67
5.2.6 Recebendo as mensagens pelo Smartphone	68
5.3 Trabalhando com videoconferência	70
5.3.1 Qual foi a API utilizada na videoconferência?	71
5.4 Envio de Mensagens de Texto via Bubble	72
5.5 Comprovante de Registro de Software	75
5.6 Trechos do código fonte utilizado através do Bubble	76
6. Conclusão e Trabalhos Futuros	78
7. Referências	79

1. INTRODUÇÃO

Com a popularização da banda larga e a evolução da sua capacidade de transmitir dados em alta velocidade, cada vez mais, as pessoas estão utilizando a internet como meio de comunicação [1].

E sabe o que isso significa? Que isso impulsiona a ascensão de diversas tecnologias, entre as quais se pode destacar a tecnologia VoIP. Que vem de *VOICE OVER INTERNET PROTOCOL*, ou na língua portuguesa Voz sobre IP. O que consiste em utilizar a rede de comutação de pacotes como a internet ou redes baseadas em protocolo IP para a comunicação de voz [2].

Esta tecnologia já está em uso por aplicativos muito populares como: o Skype, o Whatsapp e o Facebook Messenger. E possui como principais vantagens: redução de custo, segurança, mobilidade, comunicação completa, além de permitir a integração da telefonia convencional com a telefonia IP.

A grande questão é poder integrar a telefonia convencional com a telefonia IP. Para isso é necessário que haja uma ATA. Onde a ATA vem a ser um Adaptador de Telefone Analógico. Que é um aparelho conversor conectado à tomada de telefone ou ao roteador, que transforma o sinal analógico em dados digitais para transmissão pela Internet [1].

Além do mais, há o PABX do inglês Private Automatic Branch Exchange, que em português pode ser interpretado como "troca automática entre ramais privados". O que nada mais é do que uma função que conecta diversos ramais, ligados a várias linhas telefônicas, a partir de uma única linha central. E no caso do VoIP se pode trabalhar com o PABX IP, que trabalha similar ao PABX, com a diferença deste se integrar na rede de internet em uma única interface, tornando os processos mais ágeis. A grande questão é que nesse caso as ligações são feitas única e exclusivamente por meio de operadoras VoIP, dependendo de uma boa conexão com a Internet [3].

Além do PABX IP, temos o Gateway, o qual é um equipamento responsável por estabelecer a conexão entre uma rede IP e uma rede pública de telefonia. Tal equipamento, trabalha com protocolos de sinalização no lado da rede VoIP e também com protocolos de telefonia convencional no lado da rede pública de telefonia, trabalhando como um roteador de chamadas [2]. Isso tudo para que seja possível a integração entre a telefonia convencional e a telefonia IP.

Diante disso tudo há um conceito muito importante que é o TDM (Time Division Multiplexers) o qual, em resumo, diz respeito à telefonia convencional. A grande questão é integrar esse tipo de telefonia com a rede IP. Por exemplo, utilizar softphones como Zoiper, Mizudroid, dentre outros para estabelecer comunicação com a telefonia convencional. E para isso, podem ser utilizados os hardwares destacados acima como a ATA e adaptadores como FXS / FXO.

Com a finalidade de concretização de todos estes conceitos, há atualmente o projeto VoIP UEMA, o qual já está em execução na própria Universidade e sendo implementado em outras instituições, este já possui muitas aplicações da tecnologia VoIP, como por exemplo: Possibilita ligações de excelente qualidade entre Smartphones e também através da web. Além de que, é possível se trabalhar com ramais e mesmo quem não esteja inserido em nenhum deles, pode se conectar através da opção "ligue direto".

Vale ressaltar que esta aplicação, já está presente nas plataformas Android e já está sendo implementada para IOS, com a possibilidade de se fazer audioconferências, além de ligações com alta qualidade.

Em decorrência do que foi citado, e tendo em vista a expansão desta tecnologia, surgiu a necessidade de ofertar esta solução para instituições de ensino, tais como: a implantação da tecnologia no Governo do Maranhão, a expansão na própria UEMA, no Pitágoras e no E-TEC.

1.1. Objetivos

1.1.1. Objetivo Geral

Ofertar a solução *VoIP* UEMA para instituições de ensino e poder fazer a adequação entre a telefonia convencional para a telefonia IP.

1.1.2. Objetivos Específicos

- Descrição da solução VoIP UEMA
 - o Diferencial tecnológico em relação a outras soluções;
 - o Participação pretendida no mercado;
- Apresentação da solução VoIP Uema para o IFMA;
- Apresentação da solução VoIP Uema para o E-TEC;
- Integração do legado TDM da telefonia convencional com a rede IP;
- Testes em laboratório;

1.2. Metodologia

Inicialmente, será apresentada a descrição da solução VoIP UEMA, com destaque de seu diferencial tecnológico em relação a outras soluções já existentes no mercado, por se tratar de uma solução inovadora. E também sua participação pretendida no mercado, em outras palavras, a possibilidade de oferta da solução para o setor público, tais como: a apresentação da solução VoIP UEMA para o IFMA e também ao E-TEC.

Em seguida, passou-se a se preocupar com a integração do legado TDM, ou seja, como possibilitar a junção da telefonia analógica com a telefonia digital. Visto que, o ideal é dar continuidade àquilo que já existe, ou substituir de forma gradativa.

Após isso, foi realizado alguns testes em laboratório, para ser possível a visualização deste cenário, com todas as oportunidades que este proporciona, no que diz respeito aos equipamentos necessários para esta tecnologia, às diferentes formas de comunicação que ela oferece, como ligações de um computador a outro telefone móvel, ligação de um computador a outro telefone físico ou a outro telefone VoIP.

Depois destes passos, foi implantado a solução VoIP no Laboratório de Telecomunicações do CCT com os devidos equipamentos, tais como: ATA, Access Point, um telefone analógico, um telefone IP e um softphone. O teste foi realizado criando um servidor Asterisk local através do Sistema Operacional Windows e a utilização do Brekeke, que é uma plataforma de comunicação VoIP que oferece soluções para gerenciamento de chamadas e servidores SIP no Windows [32].

O VoIP com todo seu legado também foi aplicado no IFMA Campus Avançado de Rosário, utilizando a mesma estrutura de implantação do Laboratório de Telecomunicações do CCT, mas com a utilização do Sistema Operacional Linux. Aqui foi implantado um o sistema Asterisk de forma a funcionar tanto na própria LAN do Campus quanto em redes mais distantes, a ponto de possibilitar ligações externas ao Campus.

Por fim, foi codificado um softphone com a utilização de uma plataforma No-code e com algumas opções tais, como: Envio de mensagens SMS, realização de videoconferência e realização de bate-papo através dos usuários logados ao aplicativo.

1.3. Justificativa

Ofertar para os setores públicos a solução VoIP UEMA, com a finalidade de proporcionar uma tecnologia com grandes diferenciais e que venha facilitar os trabalhos educacionais e administrativos. Assim como, testar o servidor Asterisk em diferentes sistemas operacionais, como: Windows e Linux. E testar uma solução de softphone através de uma plataforma no-code, a fim de testar aspectos do VoIP, como: videoconferência e envio de mensagens seja através do próprio softphone, como envio de SMS.

1.4. Aplicabilidade

O projeto pode ser aplicado em setores públicos, visto que possui a versão do aplicativo *softfone* para *Android* e também disponível para iOS, o qual auxiliará esses setores na realização de videochamadas ou videoconferências para os dispositivos móveis. Além de que, possibilitará com que haja uma adaptação entre a telefonia analógica e digital.

1.5. Estrutura do documento

Este documento está organizado em sete capítulos, abordando desde conceitos fundamentais até a implementação prática do sistema VoIP. No Capítulo 1, são apresentados a introdução, os objetivos, a metodologia empregada, a justificativa do estudo e sua aplicabilidade. O Capítulo 2 traz a fundamentação teórica, explicando os conceitos de telefonia analógica, digital e IP, além da integração com a rede legada e trabalhos correlatos. No Capítulo 3, são descritas as implementações de VoIP em diferentes instituições, incluindo a UEMA, o Governo do Maranhão e o IFMA, entre outras. O Capítulo 4 detalha a implantação prática da solução no IFMA Campus Avançado de Rosário e no Laboratório de Telecomunicações do CCT, além dos testes realizados em diferentes redes. O Capítulo 5 explora a implementação de um softphone No-Code, abordando o uso da plataforma Bubble e a integração com serviços como Twilio para mensagens e videoconferência. Por fim, no Capítulo 6 são apresentadas as conclusões obtidas com o projeto e sugestões para trabalhos futuros.

2. FUNDAMENTAÇÃO TEÓRICA

Ao se estudar a história do *VoIP*, é possível entender que o surgimento dessa tecnologia só foi concretizado por causa de três grandes invenções: o telefone, a *Internet* e o Protocolo *Internet* (IP). Com isto, podemos dizer que nomes como Alexander Graham Bell e Elisha Gray os quais inventaram o telefone no ano de 1870 foram de extrema importância para o surgimento dessa grande inovação [4].

A *Internet* apareceu pela primeira vez em meados da década de 1960, embora não fosse a *Internet* que conhecemos hoje. Originalmente, foi desenvolvida pela Rede de Agência de Projetos de Pesquisa Avançada (ARPANET), e foi uma rede de computadores rudimentar fundada pelo Departamento de Defesa dos EUA. A qual foi usada primeiramente para fornecer comunicações entre o departamento e as forças armadas dos Estados Unidos [4].

Quanto ao Protocolo *Internet* (IP), este foi inventado em 1972, através do Dr. Vint Cerf e esta invenção foi de grande relevância, já que iria definir como a informação viajaria entre computadores. Mais tarde, uma empresa israelita desenvolveu o primeiro aplicativo *VoIP* no ano de 1995. E este era chamado de *Vocal Tec Communications*. O aplicativo era simples e permitia que um usuário chamasse outro, sendo necessário apenas microfone e caixa de som. Vídeo chamadas ainda não funcionavam e a configuração exigia que ambos os usuários utilizassem o mesmo aplicativo [3].

Em 1998, a *Vocal Tec* passou a criar modelos compatíveis com outros programas de computador (*Softphones*) e também para ligar e receber chamadas de telefones convencionais. Até o final daquele ano, as chamadas *Voip* representavam menos de 1% de todas as chamadas de voz. Talvez porque, embora as chamadas eram gratuitas, o originador tinha que ouvir uma série de anúncios antes de continuar, bem como depois de terminar uma conversa [3].

Nesse tempo, começaram a desenvolver *switches* com recursos de IP e, eventualmente, desenvolveram novos *softwares* que permitiam aos usuários anexar um ATA (Adaptador para Telefone Analógico) em seus telefones [3].

A tecnologia continuou crescendo e no ano de 2003, o número de chamadas *VoIP* chegou a uma marca significativa. Passando de 1% para 25% de todas as chamadas de voz feitas nos Estados Unidos. Isso se deve ao fato da expansão da *internet* banda larga a qual foi um divisor de águas para a sua história [3].

Já no Brasil, essa inovação demorou um pouco mais para se expandir. Era preciso criar uma infraestrutura digital capaz de suportar que empresas inteiras fossem geridas através do sistema *VoIP*. Porém, a cada dia que se passa a qualidade da chamada tem sido aprimorada a ponto de está sendo cada vez mais falada no setor de telecomunicações [3].

2.1. Telefonia analógica

Como já mencionado nos parágrafos anteriores, a telefonia analógica surgiu com a invenção do telefone através de Alexander Graham Bell e Elisha Gray no século XIX. E é uma rede usada para transmitir chamadas através de fios telefônicos que transportam dados de voz analógicos. Normalmente aparelhos telefônicos que independem de nenhum tipo de conexão com a *internet*. E que dependem de uma rede telefônica pública comutada (PSTN) para realizar chamadas [5]. A qual rege o sistema telefônico tradicional que transmitia dados de voz analógicos por meio de fios de cobre. Além disso, é interligada por centrais telefônicas (comutadores de circuito), linhas telefônicas, cabos de fibra óptica, *links* de transmissão de micro-ondas, redes celulares, satélites de comunicação e cabos telefônicos submarinos, e tem o intuito de permitir que os telefones se comuniquem com facilidade e precisão [7].

Nesse sistema de telefonia, há cabeamentos que ligam a estrutura física às centrais telefônicas, essas centrais cobram taxas que variam por tempo de ligação, tipo de aparelho e distância dos pontos de chamada. Além desse custo, ainda existem custos voltados à instalação e passagem de cabos para conectar linhas ou ramais aos aparelhos telefônicos [5].

2.1.1. Vantagens

Na telefonia analógica há algumas vantagens a serem consideradas, dentre as quais se podem destacar: que não há problemas com a falta de energia, visto que em caso de interrupção elétrica, as centrais telefônicas possuem baterias, que em casos de apagões, funcionam como fonte de energia [8].

De igual modo, a telefonia analógica tende a ter maior aceitação, uma vez que é um modelo mais conhecido e tradicional e soa mais familiar às empresas. Além disso, há uma gama enorme de operadoras com planos de banda larga em conjunto com este tipo de telefonia, já muito estabelecida no mercado [5].

Outro ponto a se destacar é que a telefonia analógica ainda possui uma boa disponibilidade que é de cerca de 99,999% e possui confiabilidade, já que são menos suscetíveis a ataques cibernéticos, em virtude de ser baseada em comutação de circuitos em vez de pacotes de dados [9].

2.1.2. Desvantagens

Há desvantagem quanto à infraestrutura, porque na telefonia analógica a necessidade de estrutura física é maior e conta também com a grande utilização de cabeamentos. E isso dificulta sua expansão ou reconfiguração. Além de que, torna os custos mais caros, principalmente em empresas onde a demanda de telefones é alta ou até mesmo, em chamadas de longa distância e internacionais [8].

Há também a questão dessa tecnologia possuir flexibilidade limitada. A ponto de oferecer menos recursos avançados em comparação a outras existentes, e que possuem recursos, que não estão presentes na telefonia analógica, tais como: encaminhamento de chamadas, videoconferência integrada e integração com outras tecnologias de comunicação.

Quanto à migração, tem se observado que há grande demanda de infraestrutura por parte da telefonia analógica e isso dificulta a sua migração, principalmente nos dias de hoje onde o *home office* tem se tornado mais comum [8]. Ou seja, esse tipo de telefonia requer uma infraestrutura física extensa de cabos e comutadores, o que pode limitar a disponibilidade em áreas remotas ou subdesenvolvidas.

2.2. TDM

O ser humano sempre teve a necessidade de se comunicar e antigamente as comunicações eram limitadas e baseadas principalmente em métodos simples, como mensageiros, sinais de fumaça, tambores de comunicação, entre outros. Com isso, não havia necessidade de técnicas de multiplexação avançadas, já que as redes de comunicação eram relativamente pequenas e não tinham capacidade para transmitir grandes volumes de informações. Logo em seguida, com o advento do telégrafo no século XIX, houve uma necessidade crescente de transmitir informações de forma mais eficiente e rápida. E nesse período, surge o termo *multiplex* que dá origem ao nome *Multiplexação*. Essa técnica foi utilizada basicamente para telegrafia, até o começo do século XX, quando o impressionante crescimento da telefonia necessitou da introdução de multiplexação dos sinais de voz. E aí com o aparecimento de novas técnicas de modulação, especialmente a de Banda Lateral Única, surgiu um novo sistema de multiplexação: a multiplexação por divisão em frequências (FDM), que rapidamente alcançou uma tremenda popularidade em centrais telefônicas [10].

A Multiplexação por Divisão de Frequência ou simplesmente FDM, é um tipo de multiplexador que combina sinais de entrada atribuindo a cada sinal uma faixa de frequência diferente dentro do espectro disponível. Em outras palavras, é uma tecnologia que transmite múltiplos sinais simultaneamente sobre um único caminho de transmissão. Porém, esta

técnica funciona através de modulação, que permite o deslocamento de um sinal no espectro de frequência [11].

Na prática, a multiplexação por divisão de frequência está presente nas rádios AM e FM, na distribuição de canais de TV e na primeira geração de telefonia celular [12].

Enquanto que no FDM há a transmissão de múltiplos sinais simultâneos sobre um único caminho de transmissão, na TDM ocorre apenas uma transmissão por vez. Ou seja, cada transmissor tem o meio totalmente disponível para ele durante certo intervalo de tempo. De forma analógica e já exemplificando esse tipo de multiplexação, temos o computador que pode executar vários programas "simultaneamente". Em outras palavras, é possível escutar uma música enquanto faz um *download* de um arquivo e, ao mesmo tempo, ler uma página em algum *site* na *internet*. E isso é completamente possível, apesar do computador só possuir um processador, apesar de que só se executa um pequeno grupo de instruções de cada programa por vez. Inicia com algumas instruções de um programa, depois passa a executar algumas instruções de outro programa e assim sucessivamente, depois, retorna ao primeiro programa e tudo começa novamente [12].

E depois de tudo, é passado a sensação de que as coisas estão ocorrendo "simultaneamente", mas, na verdade, elas não estão. O tempo foi dividido em intervalos e em cada um desses intervalos o processador está sendo usado totalmente por apenas um dos programas, porém como isso acontece a uma velocidade muito alta, temos a impressão de que tudo acontece ao mesmo tempo [12].

Hoje existem técnicas mais avançadas como é o caso do OFDM, a qual tem se tornado uma técnica crucial em sistemas de comunicação digital, como *Wi-Fi*, LTE (4G) e 5G. E que surgiu como uma evolução da técnica FDM, onde no lugar de utilizar-se bandas de guarda para a separação das subportadoras na recepção do sinal, trabalha-se com uma particular sobreposição espectral de subportadoras [13].

Mas apesar das técnicas atuais, há a aplicação do TDM, como por exemplo, podemos destacar a existência da mesma na telefonia celular no sistema GSM (*Global System for Mobile Communications*) e também em *backbones* nacionais e nas redes PONs (redes ópticas passivas) empregadas para interligar os usuários finais às concessionárias, ambos compostos por enlaces de fibra óptica que dentre outras técnicas, como é o caso da WDM (Multiplexação por Divisão de Comprimento de Onda), emprega a TDM [14].

2.3. Telefonia IP

Depois de se estudar um pouco sobre a telefonia analógica, é iniciado o estudo sobre a telefonia IP, também conhecida como telefonia digital. A qual é uma tecnologia que permite a transmissão de chamadas telefônicas por meio da *internet* ou de redes de dados IP. Em outras palavras, esse tipo de telefonia captura a voz, que é transmitida por meio de dados analógicos. Ela então a converte em pacotes de informações que, em seguida, são enviados por protocolo TCP/IP, sendo convertido de novo em voz [15].

É importante destacar que juntamente com o conceito de telefonia IP existe o conceito de VoIP. E que a telefonia IP é mais ampla do que o VoIP. Uma é a base para a execução da outra. A telefonia IP, por sua vez, consiste no uso do sistema de telefonia pelo IP. Com isso, o áudio analógico é transformado em dados e pode ser transmitido pela rede. De maneira simples, essa tecnologia garante a infraestrutura necessária à navegação do VoIP [16].

Para se compreender ainda melhor essa diferença, podemos verificar que a telefonia IP aborda equipamentos e tecnologias de rede que usam o protocolo de roteamento de pacotes para encaminhamentos da voz. Enquanto o VoIP consiste no roteamento da conversa pela *Internet*. Portanto, ele é a voz; Na telefonia IP há a necessidade de aparelhos específicos. No VoIP requer a instalação de um *software*; Na telefonia IP tem uma estrutura similar à de uma linha telefônica comum. Por outro lado, a tecnologia que executa a atividade é igual à do VoIP; Na telefonia IP consiste no aparato técnico, ou a estrutura tecnológica que proporcionará o resultado final do processo comunicativo que é o próprio VoIP; Geralmente, a telefonia IP é usada como um sistema convencional, enquanto o VoIP costuma ser utilizado de computador para computador [16].

E apesar de existirem todas essas diferenças, há também semelhanças entre ambos os conceitos, tais como:

- Mobilidade: Com ambas as tecnologias é possível ter o mesmo número em qualquer lugar do mundo. Assim, os clientes entram em contato sempre que necessário [16];
- Economia: Com qualquer uma das tecnologias, é possível reduzir custos para uma empresa. Já que, a comunicação é executada pela *Internet*. Por isso, há uma economia de até 90% na conta de telefone. Isso acontece devido ao contrato estabelecido, que é feito com a operadora de *Internet*, em vez de ser com a de telefonia tradicional [16].

- Implementação: Das duas tecnologias existe uma implementação simplificada. Em alguns casos, o cliente pode usar adaptadores, em vez de aparelhos próprios. Desse modo, é desnecessário realizar grandes modificações na estrutura da rede [16].
- Produtividade: O tempo de trabalho dos colaboradores é otimizado com VoIP e telefonia IP. As chamadas se tornam mais eficientes. Com isso, a equipe pode focar no que é estratégico e trazer mais lucro para o negócio [16].

2.4. Portas físicas FXS e FXO

Ao buscar entender um pouco mais sobre a telefonia IP e o VoIP, é interessante concretizar a sua aplicação. Para desta forma, não permanecer apenas em conceitos. Por causa disso, iremos tratar um pouco mais sobre os equipamentos que envolvem essa tecnologia.

Para iniciar, vamos falar sobre o ATA (adaptador para telefone analógico), o qual tem a função de adaptar um telefone convencional para que ele seja capaz de se conectar com uma rede IP, com o intuito de realizar chamadas via VoIP [17].

Além do mais, o ATA é uma excelente opção para quem já possui um grande parque telefônico em uso e mesmo assim quer migrar para telefonia VoIP. Além de que, os modelos no mercado são diversos e flexíveis e podem trabalhar em conexões com IP Dinâmico ou IP Fixo. Sendo que alguns funcionam até mesmo como roteadores e em geral podem ser configurados nos sistemas operacionais mais usados: *Windows, Mac OS* ou *Linux* [17].

E dentro deste equipamento, há duas portas muito conhecidas, elas são: FXS e FXO. Vale ressaltar que os ATAs que possuem acima de duas portas são conhecidos como *Gateways*. Onde podem possuir uma ou duas portas *Ethernet* para conexão com a *internet*. E cujas portas podem ser usadas em linhas analogicas de telefonia e que também são conhecidas como POTS (Sistema de telefonia tradicional) [17].

Quanto às portas FXS do inglês *Foreign Exchange Subscriber*, é definida como sendo a interface que fornece sinal para telefones analógicos. E de uma maneira bem simples podemos dizer que é o *plug* que fica na parede e fornece o tom da discagem, o som e a energia. É bem válido lembrar que sem o ATA, um telefone geralmente está conectado de forma direta a uma porta FXS (*Foreign eXchange Subscriber*), fornecida por uma operadora de telefone. E que os *Gateways* FXS que estão sendo vendidos no mercado, podem ter 4, 8, 16, 24, 32 ou 48 portas. Estes geralmente usados em empresas que começaram a usar a estrutura analógica junto com a tecnologia VoIP, conectando os aparelhos telefônicos convencionais nos *Gateways* FXS [17]. No que diz respeito às portas FXO ou *Foreign Exchange Office*. É uma interface que recebe sinal da linha analógica, da operadora de telefonia ou de uma central PABX. Ela também indica se o telefone está no gancho ou fora dele e o aparelho que está conectado a essa porta pode ser chamado de dispositivo FXO. E que todos os telefones a possuem. De outra maneira, podemos entender a porta FXO (*Foreign eXchange Office*) como o *plug* que se conecta na parede por meio de um cabo, a fim de receber as informações da operadora telefônica. E que para transformar uma linha analógica em uma conexão VOIP, será necessário um *Gateway* para conectá-lo à porta FXO [17].

Com isso, se uma determinada empresa ou organização possuir linhas analógicas e desejar adaptá-las para tecnologia VoIP, existem 2 formas. A primeira é utilizar um *Gateway* FXO e a segunda é fazer a portabilidade para uma linha digital [17].

2.5. Trabalhos Correlatos

Existem diversos trabalhos e artigos na literatura que tratam acerca do VoIP e suas aplicações, no entanto neste trabalho será destacado apenas dois, como mencionado em [21] e [22]. O primeiro trabalho explora o estudo da qualidade de voz em redes IP, começando por uma revisão dos protocolos e mecanismos relacionados à qualidade de serviço (QoS) e seu impacto sistêmico na presença ou ausência desses mecanismos. Ele também analisa diversos métodos de avaliação da qualidade de voz, com foco em métodos automáticos para analisar os efeitos de fatores como perda de pacotes, atraso e jitter, além da própria codificação de voz em baixas taxas. Além de caracterizar o serviço de voz em redes IP, levando em consideração os efeitos dos fatores de rede e gateway no tempo de estabelecimento de uma chamada e na qualidade da voz. Já o segundo trabalho fala acerca da implementação de um sistema VoIP para uso nas disciplinas do curso de Engenharia Elétrica com Habilitação em Telecomunicações da Pontifícia Universidade Católica de Campinas (PUC-Campinas). Tem como objetivo familiarizar os estudantes com essa tecnologia e fornecer-lhes ferramentas para análise de redes, com propósitos educacionais. O sistema foi desenvolvido utilizando software livre e gratuito, buscando minimizar os custos e permitir seu uso em regiões com recursos econômicos limitados no futuro. Já o terceiro trabalho [9] trata a respeito do desenvolvimento de uma aplicação VoIP multiplataforma (Android e iOS) usando o Flutter. Possui uma interface amigável para autenticação e realização de chamadas de áudio e vídeo. Sendo que a autenticação é realizada por discentes, docentes e técnicos administrativos através do sistema Siguema. E esta pesquisa, tem como objetivo desenvolver e implantar uma solução VoIP para UEMA e outros setores públicos como: E-TEC e IFMA Campus Avançado de Rosário. Há uma implementação prática no que diz respeito à integração do legado TDM tanto no laboratório de telecomunicações do CCT quanto no IFMA Campus Avançado de Rosário e desenvolvimento de um softphone com aplicações VoIP. E isso não é abordado no trabalho [21], é abordado apenas a implementação de softphone nos trabalhos [22] e [9], sendo que o primeiro aborda um software livre e o segundo e desenvolvimento através do Flutter. Em comparação às três pesquisas, somente esse presente trabalho se preocupa com o legado de telefonia analógica. Quanto às plataformas suportada não há essa abordagem no trabalho [21] e [22] e no trabalho [9] o aplicativo desenvolvido utilizou o Flutter, enquanto que nessa dissertação foi utilizado o Bubble que por ser no-code possui mais facilidade no momento que é desenvolvido e criado o softphone. E acerca do softphone. Os trabalhos [21] e [22] não codificam nenhum softphone, já o trabalho [9] codificou um softphone usando autenticação, áudio e vídeo. Já nesta pesquisa, o diferencial está no envio de SMS e na criação de link de convidado para videoconferências. Por fim, somente esta presente pesquisa testa o servidor Asterisk em dois sistemas operacionais distintos: Windows e Linux. Na tabela 1 é possível ser observado com mais detalhes um comparativo com as três pesquisas citadas.

Aspecto	Trabalho [21]	Trabalho [22]	Trabalho [9]	Este Trabalho
Tema Principal	Qualidade de voz em redes IP	Implementação de um sistema VoIP para fins educacionais	Desenvolviment o de uma aplicação VoIP multiplataforma (Android e iOS) usando Flutter	Desenvolviment o e implantação de uma solução VoIP inovadora para a UEMA e setor público
Implementação Prática	Não aborda	Descreve a implementação de um sistema VoIP com software livre e gratuito	Desenvolve uma aplicação VoIP multiplataforma usando Flutter	Desenvolve e implanta uma solução VoIP com integração de legado TDM e softphone
Legado Telefonia Analógica	Não aborda	Não aborda	Não aborda	Aborda a integração do legado TDM (telefonia analógica com digital)

Plataformas Suportadas	Não aborda	Não aborda	Desenvolve aplicativo para Android e iOS usando Flutter	Desenvolve aplicativo para Android e iOS com utilização do Bubble
Softphone Codificado	Não aborda	Não aborda	Desenvolve uma interface amigável para autenticação e realização de chamadas de áudio e vídeo	Desenvolve um softphone com funcionalidades como SMS, videoconferênci a e bate-papo
Teste do Asterisk no Windows e Linux	Não aborda	Não aborda	Não aborda	Testa o Asterisk na versão Windows no Laboratório do CCT e Linux no IFMA de Rosário

Tabela 1: Comparativo com Três Pesquisas Distintas. Fonte: Autor.

3. DESENVOLVIMENTO

Depois de se observar um pouco acerca da parte teórica do VoIP e já com o intuito de se fazer uma aplicação de todos esses conceitos que estão por trás da Universidade VoIP, chega o momento de fazer os devidos testes e de partir para a prática da solução. Já que, o legado analógico precisa ser substituído gradativamente por redes totalmente IP e isso é certamente bem melhor visualizado através de alguns projetos.

Por causa disso, este presente trabalho apresenta, nesta seção, o projeto da Universidade VoIP, propriamente dito, e como sendo uma solução de comunicação baseada no protocolo IP. Este tem como objetivo o de proporcionar chamadas de voz e vídeo num modelo cliente-servidor, com dois servidores, um para autenticação e outro para registro de usuário. Onde os cinco primeiros projetos foram: VoIP UEMA, VoIP Gov MA, VoIP Pitágoras, VoIP eTec e VoIP Valen.

3.1. VoIP Uema

A primeira aplicação da Universidade VoIP que será tratada é o VoIP UEMA o qual foi desenvolvido na UEMA, para seu público em geral contido pelos estudantes, professores e técnicos administrativos em 20 campi, conectados pelo mesmo *data center*. Para essa ideia sair do papel foi desenvolvido um *softphone* para que a comunidade UEMA pudesse fazer chamadas de voz e vídeo através de *smartphones* com sistema operacional *Android*, *iOS*, para o sistema operacional *Windows*, bem como para telefones fixos analógicos/digitais. Na Figura 1 é mostrado a tela inicial desse *softphone* [6].

Trata-se de uma solução de baixo custo, sendo possível a criação de extensões de usuário contendo informações como nome, identificação, cargo, curso, centro e campus, além de obter informações de todos os usuários cadastrados no sistema acadêmico e administrativo da universidade (SIGUEMA). Também é possível realizar chamadas de voz e vídeo por meio de aplicativos para Windows, Android e iOS. A inovação deste projeto está no fato de que não há solução semelhante na literatura para comunicação quadruple play, permitindo a integração com qualquer banco de dados corporativo para criar e gerenciar a lista de extensões de usuários. O aspecto de baixo custo foi justificado por uma análise financeira, mostrando que a despesa anual com telefonia caiu, representando uma economia superior a 97% [6].

A questão financeira foi observada de forma mais detalhada considerando que nos anos de 2013, 2014 e 2015, a UEMA teve uma despesa média anual de conta telefônica de R \$1.256.624,30 (US \$312.500,00). E que dois anos após a implantação do projeto VoIP

UEMA, a despesa anual com contas telefônicas caiu para US\$9.000, representando uma economia de mais de 97% [6].

Em síntese, o projeto desta solução consiste nos seguintes componentes: Serviço web VoIP UEMA, Servidor VoIP UEMA SIP, Sistema acadêmico e administrativo SIGUEMA, Aplicativos VoIP UEMA, Webphone VoIP UEMA e Página web VoIP UEMA [6].

Figura 1: Tela inicial do softphone. Fonte: Projeto VoIP UEMA.

É importante mencionar que para os testes iniciais desta aplicação foi configurado um servidor baseado em Linux (Elastix). E a razão da escolha deste foi o fato de ser freeware, ter suporte para controle de usuários e relatórios e possuir uma comunidade no Brasil [34].

Ainda falando sobre como foram feitos os testes iniciais, foi utilizado como softphones: X-Lite para Windows PC, Zoiper para Windows PC e smartphones, e CSipSimple para Android. O softphone num primeiro momento foi desenvolvido com Android Studio IDE e utilizou Java como linguagem de programação e como já mencionado esse softphone visa fazer autenticação com o SIGUEMA e proporcionar o fluxo de áudio de qualidade [34].

Além da rede de telefonia, foi desenvolvida uma página web para consulta de informações, incluindo catálogo telefônico, FAQ e suporte. O projeto envolveu alunos de Engenharia da Computação e membros do NTI, garantindo um desenvolvimento colaborativo e inovador para a universidade [34].

Todos os outros quatro projetos (VoIP Gov MA, VoIP Pitágoras, VoIP eTec e VoIP Valen) mostrados nos itens anteriores são derivados do projeto VoIP UEMA. Ou seja, foi realizada uma personalização para que novos projetos fossem surgindo. Observe atentamente um pouco mais sobre cada um deles nos próximos tópicos.

3.2. VoIP Gov MA

O VoIP Gov MA foi um projeto que tem como objetivo modernizar a rede de comunicação do estado do Maranhão, dentro de seus departamentos. Assim como o de reduzir custos em pelo menos 30% em cada órgão ou entidade, previsto pelo decreto nº 34.579 de 23 de novembro de 2018, o qual determinava medidas para reduzir custos tanto na administração direta quanto na administração indireta.

O projeto VoIP Gov MA é também um serviço em nuvens baseado no projeto VoIP UEMA. E que possui um servidor *web* e um servidor SIP os quais podem ser hospedados fisicamente em um roteador próximo, ou em outro servidor em nuvens e onde são usados para registro e autenticação de usuários respectivamente.

Ele possui um aplicativo baseado no VoIP UEMA. A título de se enxergar melhor essa informação, será exibido na Figura 2 uma janela do aplicativo onde a lista de usuários foi baixada.

Figura 2: Lista de usuário do aplicativo VoIP Gov MA. Fonte: Projeto VoIP UEMA.

Na Figura 3 será exibido a tela de um teste de eco feito na aplicação VoIP Gov MA, a fim de que seja verificada a qualidade da ligação.

Figura 3: Teste de eco no aplicativo VoIP Gov MA. Fonte: Projeto VoIP UEMA.

Na Figura 4 será exibida uma janela apresentando a lista de chamadas recentes da aplicação VoIP Gov MA.

Figura 4: Chamadas recentes do aplicativo VoIP Gov MA. Fonte: Projeto VoIP UEMA.

Com o intuito de conhecer um pouco mais sobre a aplicação, vamos observar na Figura 5 uma janela com a lista de contatos.

Figura 5: Lista de Contatos do aplicativo VoIP Gov MA. Fonte: Projeto VoIP UEMA.

Quando um determinado usuário estiver registrado na aplicação, será destacado na cor verde no canto da aplicação para que seja notificado ao utilizador do aplicativo, conforme se observa na Figura 6.

Figura 6: Usuário registrado no aplicativo VoIP Gov MA. Fonte: Projeto VoIP UEMA.

Outra funcionalidade interessante a ser utilizada, é a possibilidade de se colocar a visibilidade do ramal, como se observa na Figura 7:

Figura 7: Extensão de visibilidade no aplicativo VoIP Gov MA. Fonte: Projeto VoIP.

Além do aplicativo, o VoIP Gov MA também tem um *webphone* o qual é baseado no *webphone* do VoIP UEMA. Para se enxergar melhor, é possível ser observado a tela inicial dessa aplicação na Figura 8.

Figura 8: Janela inicial do webphone VoIP Gov MA. Fonte: Projeto VoIP.

Com o VoIP Gov MA em sua versão *webphone*, pode ser visualizado uma lista de chamadas recentes, como se observa na Figura 9.

+ + α (e									
				-					
			8	1	ж	0	0		
	10000	-		Lings	-	-		12220	
100		-dolarity	0.825			man data		and the	
199	11		int.			and par-			5

Figura 9: Chamadas recentes do webphone VoIP Gov MA. Fonte: Projeto VoIP.

Na Figura 10 é exibido um teste de eco com a utilização dos números *43.

Figura 10: Teste de eco do webphone VoIP Gov MA. Fonte: Projeto VoIP.

Depois do teste de eco, é exibido na Figura 11 um exemplo de uma chamada em progresso. E logo em seguida, na Figura 12, o status de aguardando nova chamada do webphone do VoIP Gov MA.

Figura 11: Chamada recebida do webphone VoIP Gov MA. Fonte: Projeto VoIP.

CARLOS HENRICHE - 1965
And late asymptotically constrained in terms
and the second se
(1) (2) (3)
(4) (8) (8)
(7) (8) (9)

Figura 12: Aguardando nova chamada do *webphone* VoIP Gov MA. Fonte: Projeto VoIP.

Finalmente, nas figuras de 13 a 15 será exibido a tela de usuário registrado, lista com os usuários registrados e a janela com o botão de visibilidade ativo, respectivamente.

Figura 13: Usuário registrado do webphone VoIP Gov MA. Fonte: Projeto VoIP.

Figura 14: Extensões de usuários do webphone VoIP Gov MA. Fonte: Projeto VoIP.

Figura 15: Extensão de visibilidade do webphone VoIP Gov MA. Fonte: Projeto VoIP.

3.3. VoIP Pitágoras

Pitágoras é uma universidade presente em vários estados brasileiros. Além disso, é importante entender que o projeto VoIP Pitágoras é baseado num serviço em nuvem e no projeto VoIP UEMA. No que diz respeito ao servidor *web* deste projeto, assim como servidores SIP, podem ser hospedados fisicamente em um servidor, podem ser hospedados em um servidor nas nuvens ou até mesmo localizados próximo a um roteador. E são utilizados para autenticação e registro de usuários, respectivamente.

Além do servidor *web*, foi desenvolvido também um *softphone freeware* para o sistema operacional Android o qual foi implementado para chamadas VoIPs e de vídeo. O app permite autenticação através das credenciais do sistema acadêmico e administrativo presente na própria universidade. Tais credenciais permitem o acesso ao servidor web do Pitágoras e registro com o servidor SIP, possibilitando com que haja chamadas SIP com a utilização da métrica MOS, que basicamente irá medir a subjetividade da chamada VoIP. E que as pontuações da chamada precisam variar de 1 para aceitável a 5 excelente.

As principais características do software são as seguintes:

- A utilização e suporte de chamada de voz através do codec Opus;
- A utilização e suporte de chamada de vídeo através do codec H.264;
- Há boa robustez de perda e ocultação de perdas de pacote;
- Há a presença de segurança e criptografia com SRTP (Protocolo de Transporte Segura em Tempo Real), baseado na biblioteca OpenSSH.

No que se refere à linguagem de programação utilizada para o desenvolvimento deste softphone, assim como as ferramentas utilizadas, temos: o Android Studio IDE (Ambiente de Desenvolvimento Integrado) e a presença da linguagem Java.

Depois de testado, a aplicação conseguiu atingir seu objetivo com sucesso, já que consegue autenticar os usuários no servidor web VoIP Pitágoras, cadastra os usuários no servidor Asterisk utilizando suas credenciais acadêmicas / administrativas e permite estabelecer *streaming* de áudio e vídeo de forma satisfatória.

Além de tudo que foi apresentado acerca do *softphone* é interessante destacar mais algumas características: uma delas é que existe um recurso de privacidade do aplicativo que permite aos usuários desativar sua visibilidade nas listas de extensões e é possível bloquear qualquer usuário na lista de extensões. Com a intenção de uma melhor visualização da topologia do projeto e da tela de apresentação do aplicativo, serão disponibilizadas as respectivas imagens na Figura 16.

Figura 16: Topologia do Projeto VoIP Pitágoras. Fonte: Projeto VoIP UEMA.

Figura 17: Tela de Apresentação do Aplicativo. Fonte: Projeto VoIP UEMA.

3.4. VoIP eTec

A eTec é o Conselho Federal de Técnicos Industriais. Há mais de quatro décadas, um grupo de técnicos começou a trabalhar para regulamentar a categoria profissional - Lei nº

5.524/1968 e Decreto nº 90.922/1985 - para criar seu conselho. Em 26 de março de 2018, a sanção presidencial da Lei nº 13.639/2018 representou uma conquista histórica e a concretização do início de uma nova era, com maior segurança para a sociedade e desenvolvimento profissional para milhões de técnicos, devidamente reconhecidos como profissionais [19].

O objetivo inicial do projeto VoIP eTEC era fornecer um sistema de comunicação moderno para 60 a 100 mil usuários e conectar cinco escritórios, começando pelas recepções e fornecendo duas a três extensões. Em resposta a essa demanda, foi proposto o VoIP eTec.

O Projeto VoIP eTec também é um serviço em nuvem baseado no projeto VoIP UEMA. O serviço *web* VoIP eTec e os servidores SIP podem ser hospedados fisicamente em um servidor, seja na nuvem ou localmente próximo ao roteador, e são usados para autenticação e registro de usuários, respectivamente.

Um teste de conceito do Projeto VoIP eTec foi proposto com base na topologia de rede apresentada e em um ambiente de teste, conforme se observa na Figura 18.

Além disso, o conceito foi comprovado, e foi possível realizar chamadas de/para telefones analógicos/digitais, permitindo a integração com a telefonia legada.

Essa implantação foi observada na Figura 19, onde se observa a presença de um ATA, Access Point, um servidor Asterisk com a utilização do sistema operacional Windows e onde é usado o Brekeke. Além disso, há um telefone analógico e telefone IP, ambos testados também através de um softphone para testes de chamadas.

De acordo com a Anatel, em 2020, o número de linhas fixas no Brasil era de 38,5 milhões [20]. Isso representa uma enorme oportunidade para soluções se integrarem com dispositivos convencionais de telefonia legada antes de migrarem para IPs e telefones móveis.

Figura 18: Topologia do projeto VoIP eTEC. Fonte: Projeto VoIP UEMA.

Figura 19: Teste de conceito do Projeto VoIP eTEC. Fonte: Projeto VoIP UEMA.

3.5. VoIP Valen

O porto Valen se encontra localizado no porto de Itaqui, no estado do Maranhão, sendo um dos portos mais importantes do Brasil. Possui 120 mil metros quadrados, 12 bombas de combustível para veículos leves e 16 para veículos grandes, lojas de conveniência, armazéns, 26 lojas comerciais, farmácias, hotéis, 73 apartamentos executivos padrão e estacionamento com 600 vagas. Está aberto 24 horas por dia e oferece o clube Estrada, uma área com acesso gratuito para motoristas de caminhão, *internet*, barbearias, enfermarias, mesas de jogos e um cinema [18].

O Projeto Valen VoIP também é um serviço em nuvem baseado no projeto VoIP UEMA. Os servidores *web* VoIP Valen e SIP podem ser hospedados fisicamente em um servidor, seja na nuvem ou localmente próximo ao roteador, e são usados para autenticação e registro de usuários, respectivamente. Este foi o segundo projeto de VoIP da Universidade que foi implementado e que atualmente é objeto de estudo do mestrando Caio de Castro Torres. Além disso, nesse projeto um PABX fixo estava sendo usado e, por esse motivo, foi necessário instalar um *gateway* VoIP para permitir a integração da telefonia legada com o aplicativo VoIP Valen.

Foi necessário o servidor *web* VoIP Valen para alguns testes de extensão, conforme se observa na Figura 20:

5	0 It supervised and	auto Tanah	-ini						* 0 0
E Am	🗅 fear Maria Farin 🗴 🗘 Pagina Fa	44M_ 8	Distant August		aller to Data.	B	allen 😐	Banka Camana - No.	
					e 12121	V	IP		
					1	8	0	e	
					Atsetter	1988			
				Lista de	ramais de u	ovárico S	DOLEMA		
				1,009	shurtash are 12	070(1:171	12 PE		
				Trapie pr	1000 (1000), C				
	Name	Ramal	Centra		Unitate			CursorCarge	Wedandade Category
	VEWRID DE 1657E	-	10518		Teste.			teste.	Teste.
	SOUBLET PRENTAILBEIRG	30100100	CENTINO CE TECNOLOGI	céscus Jas	GRADUAÇ	40		ENGENHAMA DA COMPUTAÇÃO BACHAVELKOU	PRESENCIAL
	ULAS INCLARED BOURA	204212000	CENTRO DE TUDNOLOGI	oévova : Ske	DRADOAC	Áġ.		CHIENHARIA DA COMPUTAÇÃO BACHARELADO	PRESENCIAL
					1.000		-	a 1. Care in advert in Co.	Company and

Figura 20: Serviço web VoIP Valen para extensões de teste. Fonte: Projeto VoIP UEMA.

3.6. Integração com a rede legada

É bem sabido que houve uma queda da utilização da telefonia analógica a partir de 2020, onde o número de linhas fixas passou para 38,5 milhões e, segundo a Anatel, em 2018 esse número era mais de 40,4 milhões. Ou seja, tem havido uma queda, mas apesar disto, precisamos entender a grande influência que a telefonia analógica ainda exerce nas telecomunicações, razão pela qual ela não deve ser anulada, mas sim implementada juntamente com a telefonia VoIP [20].

Por causa disso, foi realizada uma integração da telefonia analógica com a telefonia IP no laboratório de telecomunicações do CCT da UEMA, cenário que será exibido na fase de dissertação final deste projeto. E terá como auxílio a ferramenta Brekeke do *Windows*.

O mesmo cenário será implementado no IFMA Campus Avançado de Rosário, com a utilização do *asterisk* no sistema operacional *Linux*. Será discutida também a aplicação *No-code* para ser implementado no projeto VoIP UEMA.

4. IMPLANTAÇÃO NO IFMA CAMPUS AVANÇADO DE ROSÁRIO E LABORATÓRIO DE TELECOMUNICAÇÃO DO CCT

Para ambos os cenários de implantação foi utilizada a mesma estrutura, as quais irão ser detalhadas nos próximos parágrafos.

Para isso foi utilizado o sistema operacional Linux em sua distribuição Ubuntu Server por ser um sistema bastante popular para ambientes de servidor e fácil de configurar, além de apresentar vantagens de segurança ao usuário [23].

Ao acessar a distribuição do Linux mencionada acima, foi instalado via terminal as principais configurações necessárias do Asterisk o qual vem a ser um framework open source para a construção de aplicações de comunicações. O mesmo é capaz de transformar um computador comum em um servidor de comunicações, além de criar sistemas PBX IP, gateways VoIP, servidores de conferência e outras soluções personalizadas [24].

Depois de instalado os pacotes necessários do Asterisk o próximo passo foi verificar seus diretórios e arquivos ao acessar o terminal através do: "etc/asterisk", onde foi possível observar todos os arquivos de configuração, dentre os quais podemos citar: *sip.conf*, *extensions.conf* e *voicemail.conf*.

No *sip.conf* é destacado o protocolo de sinalização utilizado para estabelecer, gerenciar e encerrar sessões de comunicação em redes IP (Internet Protocol). Aqui é possível realizar configurações globais e aplicá-las a todos os canais SIP criados, como por exemplo: controle de segurança que não irá permitir com que usuários não autenticados se conectem ao servidor (allowguest=no), definição da porta onde o servidor irá ouvir as conexões a qual por padrão vem a ser 5060 (bindport=5060), definir usuários e dispositivos que poderão autenticar e realizar chamadas, dentre outras funções.

Abaixo iremos exemplificar o sip.conf, enfatizando suas configurações padrões [25]:

[general] context=internal allowguest=no allowoverlap=no bindport=5060 bindaddr=0.0.0.0 srvlookup=no disallow=all allow=ulaw alwaysauthreject=yes canreinvite=no nat=yes session-timers=refuse localnet=192.168.0.0/255.255.255.0

[7001] type=friend host=dynamic secret=7001 context=internal

[7002] type=friend host=dynamic secret=7002 context=internal

No que diz respeito ao *extensions.conf*, e falando de forma geral, é aqui que se estabelece as configurações do plano de discagem. O qual define como as chamadas são roteadas, manipuladas e tratadas pelo servidor. Aqui é possível realizar a chamada para uma extensão ou número externo através do Dial(), redirecionar para a caixa postal através do *Voicemail()*, finalizar a chamada através do *Hangup()*, dentre outras funcionalidades.

Observe abaixo as principais configurações do extensions.conf [25]:

```
[internal]
exten => 7001,1,Answer()
exten => 7001,2,Dial(SIP/7001,60)
exten => 7001,3,Playback(vm-nobodyavail)
exten => 7001,4,VoiceMail(7001@main)
exten => 7001,5,Hangup()
```

exten => 7002,1,Answer()

```
exten => 7002,2,Dial(SIP/7002,60)
exten => 7002,3,Playback(vm-nobodyavail)
exten => 7002,4,VoiceMail(7001@main)
exten => 7002,5,Hangup()
exten => 8001,1,VoicemailMain(7001@main)
exten => 8001,2,Hangup()
exten => 8002,1,VoicemailMain(7002@main)
exten => 8002,2,Hangup()
```

Já o *voicemail.conf* é o arquivo que centraliza as configurações do correio de voz no Asterisk. Ele permite criar caixas postais, configurar notificações e personalizar o comportamento do sistema, garantindo que os usuários tenham acesso eficiente e seguro às suas mensagens. Aqui podemos trabalhar questões importantes como se observa nessa linha: $7001 \Rightarrow 7001$. Onde no primeiro número observamos o número da caixa postal (que pode ser igual à extensão SIP correspondente) e no segundo número temos a senha para acessar o correio de voz, que no nosso caso também será 7001.

Abaixo, veja as configurações padrões do voicemail.conf [25] :

```
[main]
7001 => 7001
7002 => 7002
```

Depois das principais utilidades devidamente ajustadas, tais como os reparos necessários dos principais ramais a serem utilizados, chega o momento de se usar o comando: *sip show peers*, o qual irá listar todas as contas SIP's do Asterisk, conforme se pode observar na Figura 21 [26].

11 sip peers [Monitored: 0 voipifma-HP-Compag-Pro-630) online, 0 offline Unmonitored: 1 onlin)5-SFF*CLI> sin show peers	e, 1	0 offline]				
Name/username	Host	Dyn	Forcerport	Comedia AC	L Port	Status	Description
1001	(Unspecified)	D	Yes	Yes	Θ	Unmonitored	
7001/7001	10.27.0.199	D	Yes	Yes	19856	Unmonitored	
7002	(Unspecified)	D	Yes	Yes	0	Unmonitored	
7003/7003	10.27.0.201	D	Yes	Yes	61620	Unmonitored	
7004	(Unspecified)	D	Yes	Yes	0	Unmonitored	
7005	(Unspecified)	D	Yes	Yes	0	Unmonitored	
7006	(Unspecified)	D	Yes	Yes	0	Unmonitored	
7007	(Unspecified)	D	Yes	Yes	0	Unmonitored	
7008	(Unspecified)	D	Yes	Yes	0	Unmonitored	
7009	(Unspecified)	D	Yes	Yes	0	Unmonitored	
7010	(Unspecified)	D	Yes	Yes	Θ	Unmonitored	
11 sip peers [Monitored: 0) online, 0 offline Unmonitored: 2 onlin	e, 9	offline]				

Figura 21: Tela com Ramais Configurados no IFMA Campus Avançado de Rosário. Fonte: Autor.

Vale ressaltar que o teste foi submetido inicialmente no setor de tecnologia de informação do Ifma Campus Avançado de Rosário e pode ser visto na íntegra através do link: https://www.youtube.com/watch?v=VZAykq_EQfg. Aqui foram testados alguns dispositivos como: o telefone analógico, telefone IP e o aplicativo MicroSIP o qual foi instalado diretamente em um notebook, com o intuito de verificar a possibilidade de chamada.

Para esse teste foi utilizado o ATA PAP2T Linksys Adaptador Voip Desbloqueado 2FXS, com 2 portas FXS o qual permite alta qualidade do serviço VoIP através de uma conexão com Internet. Através dele foi conectado um telefone analógico em uma de suas entradas FXS e também um roteador, que por sua vez se conectou com um telefone IP Yealink e que se conecta diretamente com a LAN local.

Como já mencionado, foi utilizado o aplicativo Microsip o qual pode ser definido como sendo um Softphone SIP portátil de código aberto para Windows. É bem leve de se instalar e transforma um computador num ramal de telefone IP [27].

Figura 22: ATA PAP2T Linksys Adaptador VoIP. Fonte: Autor.

Figura 23: Roteador Mercusys MW301R. Fonte: Autor.

Figura 24: Telefone IP Yealink. Fonte: Autor.

Figura 25: Softphone MicroSIP aberto para Windows. Fonte: Autor.

Em nosso teste, o telefone IP foi configurado com o ramal 7004 e o telefone analógico foi configurado com o ramal 1001, sendo que o telefone analógico como já mencionado acima

está conectado diretamente no ATA o qual se conecta diretamente com a rede local. E temos também o softphone MicroSIP configurado com o ramal 7006.

Em um primeiro teste, é realizada a ligação do telefone IP ao telefone analógico, ou seja, do ramal 7004 ao ramal 1001 e a ligação é efetuada com sucesso. No segundo momento é feito o processo inverso do analógico para o telefone IP (do ramal 1001 para o ramal 7004) e mais uma vez o teste é concretizado com sucesso.

No terceiro momento, o teste é realizado do telefone analógico para o MicroSIP (do ramal 1001 para o 7006) e satisfatoriamente o MicroSIP recebe a ligação direto do telefone analógico.

Num quarto momento, é feito uma ligação do MicroSIP para o analógico (ramal 7006 para o 1001) e ocorre tudo conforme esperado. E em quinto e último momento é realizado o teste do Microsip para o telefone IP (ramal 1001 para o 7006) e mais uma vez o resultado é satisfatório.

4.1 Testando a Implantação em Redes Diferentes

Para que seja possível a ligação entre redes diferentes, algumas configurações foram necessárias, tais como a organização da rede local, configuração do firewall e finalmente foram realizados testes através de softphones para verificar a funcionalidade de ligações VoIPs em redes diferentes.

No que diz respeito à rede local ela foi configurada em 5 (cinco) VLANs principais, como se observa na Tabela 2.

	Principais VLANs	
VLAN 100	Cabeado Administrativo	10.27.0.2/24
VLAN 102	Wireless Administrativo	10.27.2.2/24
VLAN 104	Cabeado Acadêmico	10.27.4.2/24
VLAN 106	Wireless Acadêmico	10.27.6.2/24
VLAN 108	Visitantes	10.27.8.2/24

Tabela 2: Lista de VLANs da Rede Local. Fonte: Autor.

Além da disponibilização de testes em redes diferentes dentro do Campus, foi criado também outra rede através de AP (Access Point), com o seguinte SSID: "AUTT", que no momento do teste possuía o IP: 192.168.1.100.

Logo em seguida, foi separado o IP Público: 200.137.143.210 para se trabalhar com ligações não somente em redes diferentes, mas também em locais de maior distância, por exemplo foi testado em municípios diferentes como Rosário e São José de Ribamar.

Para que tudo isso fosse possível, houve a necessidade de fazer algumas configurações no Firewall. Vale ressaltar que o Firewall utilizado na rede local foi o OPNsense e foi trabalhado nas configurações NAT e também regras da WAN e LAN para desta forma ser possível a utilização dos serviços VoIPs.

Para permitir conexões de fora para dentro da rede, foi necessário configurar as regras de NAT, para desta maneira ser possível alguém fazer ligações de fora da rede local e alcançar o IP do servidor Asterisk: 10.27.0.204. Em outras palavras, o NAT irá converter o IP Público (200.137.143.210) em um IP interno que é o servidor Asterisk, permitindo que o tráfego externo alcance esse servidor. E além do SIP foi necessário configurar regras para o RTP que é usado para transmissão de áudio e vídeo em tempo real pela internet ou redes privadas. E em nosso contexto VoIP, o protocolo RTP atua nas videoconferências, streaming de mídia, entre outras aplicações. Tais configurações podem ser observadas na Figura 26.

I	ire	W	all	NAT: F	Port Fo	orward	[Select category					•
						Source		Destination		NAT								
				Interface	Proto	Address	Ports	Address	Ports	IP	Ports	Des	scription	+	*	â		
		I.		LAN	ТСР	*	*	LAN address	9022, 9080	*	*	Ant	i-Lockout Rule	ø				
			+	RNP2	TCP/UDP	*	*	RNP2 address	5060 - 5061	10.27.0.204	5060 - 5061	SIP		*	den .	Û	D	
			↔	RNP2	UDP	*	*	RNP2 address	10000 - 20000	10.27.0.204	10000 - 20000	End UD	caminhar tráfego RTP (10000-20000 P)		ø	Û	Ō	
			+	RNP2	TCP	*	*	RNP2 address	8089	10.27.0.204	8089	End	caminhar SIP WebRTC (porta 8089)	4	ø	Û		
			↔	RNP2	TCP	*	*	RNP2 address	8443	10.27.0.204	8443	End	caminhar SIP Android (porta 8443)	*		Û	Ō	
			+	RNP2	UDP	*	*	RNP2 address	1024 - 56535	10.27.0.204	Portas_RTP	End	aminhar RTP dinâmico para VoIP	+	e de la compañía de	Û	D	

Figura 26: Lista de VLANs da Rede Local. Fonte: Autor.

E aqui temos que pensar que mesmo que o NAT direcione o tráfego para dentro da rede, o firewall do OPNsense ainda pode bloquear o tráfego na interface WAN que nosso caso

se chama RNP2 e além de poder haver um bloqueio na saída da LAN. E é por esta razão que também se faz necessário a configuração das interfaces WAN e LAN.

Na Figura 27 observamos a configuração da interface RNP2 (WAN) e na Figura 28 a configuração da interface LAN.

$\Box \models \rightarrow \frac{1}{2}$	IPv4 UDP	*	*	RNP2 address	5060 - 5061	*	•	Permitir SIP	()	0	Û
□ ► → / ③	IPv4 UDP	.*	*	RNP2 address	10000 - 20000	*	*	Permitir RTP externo (entrada)	+ 8	0	Î
□ ► → 1 ③	IPv4 UDP	*	*	10.27.0.204	10000 - 20000	*	*	Encaminhar tráfego RTP (10000- 20000 UDP)	+ t	I	
□ ► → † ③	IPv4 TCP	*	*	10.27.0.204	8089	*	*	Encaminhar SIP WebRTC (porta 8089)	ć 1	I	
□ ► → † ③	IPv4 TCP	*	*	10.27.0.204	8443	*	*	Encaminhar SIP Android (porta 8443)	+ t	I	
□ ► → / ③	IPv4 TCP	*	*	RNP2 address	8089	*	*	Permitir SIP WebRTC	+ 0	0	Î
□ ► → / ③	IPv4 TCP	*	*	RNP2 address	8443	*	•	Permitir SIP Android	+ 8	0	Û
□ ► → / ③	IPv4 UDP	*	*	RNP2 address	10000 - 20000	*	*	Permitir tráfego RTP	+ 8	0	Û
	IPv4 UDP	*	*	RNP2	1024 - 56535	*	*	Permitir RTP dinâmico	+	0	Û

Figura 27: Configuração da Interface RNP2 (WAN). Fonte: Autor.

	$ ightarrow ightarrow rac{1}{2}$	IPv4 UDP	10.27.0.204/24 * *	10000 - 20000	*	٠	Permitir RTP (saída)		*	de la	Ō	Û
	▶ → * Ø	IPv4 UDP	10.27.0.204/24 * *	7000 - 7001	*	*	Permitir RTP nas portas 7000- 7001		4	d	Ō	Û
•	pass pass (disable	d)	blockblock (disabled)	rejectreject (disabled)	(log log (disabled)	→ in ← out	4	first last	mat mate	ch :h	

Figura 28: Configuração da Interface LAN. Fonte: Autor.

Depois de todas as configurações de VLANs para teste em redes diferentes, de um AP contendo uma rede externa e do Firewall, é realizado o teste através de dois softphones: Mizudroid instalado em um smartphone com a configuração do ip público seguido da porta 5060 do SIP e os ramais já pré-configurados no servidor asterisk e o MicroSIP softphone instalado em um notebook com sistema operacional Windows e que também obedeceu às mesmas configurações do smartphone.

O MicroSIP se encontra na rede cabeada administrativa com IP: 10.27.0.201 no momento do teste e o Mizudroid está na rede externa do AP com ip no momento do teste de: 192.168.1.100 e o teste foi realizado de forma satisfatória sem nenhuma perda de áudio.

4.2 Quais as portas usadas no Firewall?

Ao começar pelas configurações do NAT do Firewall foi configurado as portas 5060 e 5061 as quais utilizam o protocolo SIP. Já a faixa 10000 a 20000 estão associadas ao protocolo RTP e a necessidade deixa faixa se deve ao fato de se permitir múltiplas chamadas simultâneas, no que diz respeito ao transporte de áudio e vídeo através do VoIP. Há também a presença da porta 8089, porta usada para WebRTC, e que permite no Asterisk chamadas de voz e vídeo via navegador. Outra porta também utilizada para funcionalidades WebRTC é a 8443 e apesar de não ser uma porta SIP, ajuda na integração do SIP com navegadores e aplicações Web seguras. Ainda falando das portas do NAT temos uma faixa que é a 1024-56535 e é utilizada para portas RTP dinâmicas, além de outros serviços auxiliares ao VoIP. Essas mesmas portas são replicadas na configuração WAN do Firewall [35].

Do lado da configuração da LAN do Firewall só foi necessário a configuração da faixa 10000 a 20000 que já mencionado é uma faixa que está associada ao protocolo RTP [35].

5. TESTE DE NO-CODE PARA IMPLANTAÇÃO DO VOIP

Nesta seção irá ser tratado acerca do desenvolvimento de um software no-code com o intuito de ser aplicado conhecimentos sobre o VoIP.

Em sua primeira versão, o software irá enviar SMS para os números desejados, assim como será possível o envio de mensagens de texto.

Vale ressaltar que o teste foi realizado na íntegra e pode ser acompanhado através do link: https://www.youtube.com/watch?v=SzoR61ak8AE.

5.1 Qual foi a plataforma utilizada?

A ferramenta utilizada para o desenvolvimento da aplicação se chama Bubble. Ela tem se tornado referência quando o assunto é desenvolvimento de softwares web sem código. Essa plataforma permite a criação de aplicativos e sistemas completos de ponta a ponta, desde o design do front-end até a estruturação do banco de dados e tudo isso sem sair da ferramenta [28].

Só para se ter uma ideia, em 2022 o Bubble captou U\$D 100.000.000,00 (cem milhões de dólares), o que prova que os investidores também estão gostando do que estão vendo e que a plataforma está se preparando para um crescimento acelerado do mercado no-code [28].

Além do mais, o Bubble permite o desenvolvimento de apps e softwares utilizando uma interface drag and drop, ou seja, na qual você arrasta e solta elementos na tela e os ajusta de forma visual [28].

Isto torna o desenvolvimento muito mais amigável a pessoas que não possuem nenhum conhecimento técnico, mas sem deixar a desejar em flexibilidade quantidade de features, ou em outras palavras, recursos [28].

Com isto, através desta ferramenta: Podemos criar designs altamente flexíveis e que se ajustam a celulares, tablets e desktops com facilidade; Conseguimos criar lógicas extremamente complexas se necessárias, tanto com ações client-side quanto server-side, ou tanto do back-end quanto do front-end; Podemos criar todo o backend do nosso aplicativo ainda dentro da plataforma; Além de também conseguirmos integrar o Bubble facilmente com qualquer outro sistema através da sua interface no-code para conexões APIs [28].

Depois de descobrir todas essas vantagens, foi decidido dar continuidade a este trabalho com esse utensílio ímpar para se programar. E como vai ser observado nos próximos parágrafos de grande valia no desempenhar do objetivo proposto.

5.1.1 Tela Inicial da Aplicação VoIP

Na tela inicial da aplicação VoIP, temos as opções de login onde o usuário tem a oportunidade de entrar no sistema colocando apenas seu e-mail e uma senha criada durante o cadastro no programa. Logo em seguida, ele poderá clicar na opção "Autenticar" para seguir adiante na próxima tela onde fará o envio da mensagem propriamente dita. Observe com mais detalhes na Figura 29.

	VolP
Login	
teste@g	mail.com
Senha	
********	ra)
	Esqueci minha senha
	Criar conta
	Autenticar

Figura 29: Tela de login do Aplicativo Bubble. Fonte: O Autor.

5.1.2 Tela de Cadastro

Para quem ainda não for cadastrado na plataforma, haverá uma opção chamada "criar conta", onde o usuário não cadastrado poderá inserir seus principais dados, como: nome, e-mail, criar uma senha e confirmar a senha criada. E se as senhas corresponderem será

habilitado um botão chamado "inscrever" e isso permitirá que o cadastro seja confirmado e que o novo utilizador do sistema possa logar a partir de então normalmente.

Isso é um procedimento adotado pela maioria dos sistemas de logins e o grande objetivo é possibilitar com que outros possam usufruir dos benefícios que essa ferramenta oferece. Observe na Figura 30 a tela de cadastro:

	Nome.	
Digite seu nome aqui		
	E-mail:	
Digite seu e-mail aqui		
	Senha:	
Digite sua senha aqui		
	Confirmar senha:	
Confirme sua senha aqui		
	Inscrever	

Figura 30: Tela de Cadastro. Fonte: O Autor.

5.1.3 Tela de Recuperação de Senha

Além de poder logar e cadastrar o sistema também permite com que a senha seja recuperada em caso do usuário esquecer a sua senha. Para isso, ele precisa clicar no link "Esqueci minha senha". E se caso o usuário ainda não tiver preenchido a opção de login com seu e-mail será exibido uma mensagem na tela: "Digite um e-mail" e bem abaixo um reforço da mensagem: "Digite um e-mail válido!". Pode-se observar na Figura 31 essa mensagem:

VoIP	
Digite um e-mail	×
Login	
teste@gmail.com	
Senha	

Esqueci minha senha	
Criar conta	
Autenticar	

Figura 31: Tela de Recuperação de Senha. Fonte: O Autor.

Com isto, o usuário deve digitar um e-mail e esse e-mail precisa ser válido porque ele receberá na sua caixa de entrada um link de recuperação de senha. E ao clicar nesse link, o usuário precisará redefinir a senha para isso continuar utilizando o sistema de envio de mensagem. Observe na Figura 32:

Figura 32: Link Enviado para Recuperação de Senha. Fonte: O Autor.

Com a Figura 33 se pode observar que o Bubble ofereceu um de "Reset here", ou redefina aqui e logo em seguida será destinado à tela que se observa abaixo, onde será possível finalmente resgatar a senha perdida.

Reset your password

Confirm new passy	vord	
kalalakakak		
	Confirm	

Figura 33: Tela de Reset de Senha. Fonte: O Autor.

5.2 Tela de Envio de Mensagem

Depois de todo o procedimento de logar no sistema, chega o momento onde o usuário terá a oportunidade de digitar um número de celular colocando o prefixo do país, mais o

prefixo do estado e o número propriamente dito. Logo em seguida, e logo abaixo poderá também redigir uma mensagem de texto e ao clicar em "Enviar SMS" a mensagem será enviada ao destino solicitado. E ao terminar o envio da mensagem o usuário terá a opção de sair do aplicativo e retornar à tela de login. Para mais detalhes, observe na Figura 34:

Figura 34: Tela para Envio de Mensagem SMS. Fonte: O Autor.

5.2.1 Qual foi a API utilizada?

Para poder fazer o envio de mensagens via SMS utilizamos uma API (Conjunto de Interfaces de Programação de Aplicativos) chamada de Twilio. Trata-se de uma plataforma para criar aplicativos de voz, vídeo e mensagens. E que permite aos desenvolvedores fazer e receber chamadas de voz e vídeo, enviar e receber SMS, WhatsApp e e-mail, além de executar outras funções de comunicação usando suas APIs de serviço web [29].

Ela foi escolhida devido a sua facilidade de configuração para todos os serviços que oferece, e isso falando do Twilio SMS ao Twilio API. Além de que, ela há facilidade no que diz respeito à integração com diversos aplicativos. E em destaque o nosso caso que há uma junção dela com o Bubble [29].

É uma ferramenta altamente escalável e viável para uso em qualquer setor. Combina os melhores canais digitais para criar uma experiência de engajamento do cliente personalizada para o seu negócio [29].

Para se ter uma ideia, ela já é utilizada, por exemplo, pelo aplicativo uber, o qual faz uma chamada de API para Twilio para iniciar e conectar a chamada. Então os dados de voz são transportados com segurança pelo Twilio e não pelo aplicativo uber. Com isso, o aplicativo apenas faz o handshake (aperto de mão) inicial entre o aplicativo Uber e o Twilio [29].

Para mais um exemplo de aplicação desta ferramenta, temos o envio dos cartões de embarque para WhatsApp via Twilio. Com isso, quando se é solicitado que o cartão de embarque seja enviado via WhatsApp e com uma mensagem personalizada de forma segura o Twilio aparece mais uma vez a desempenhar seu papel de forma eficiente e eficaz [29].

5.2.2 Como o Twilio foi incorporado no Bubble?

Dentre várias opções que o Twilio oferece, foi testado primeiramente a de envio de mensagem SMS. Desta forma, foi colocado uma ação no botão "Enviar SMS" e em "Editar Fluxo de Trabalho" foi possível destacar qual seria o serviço a ser utilizado no Twilio que no caso é: "Enviar Mensagem de Texto", visto que há um leque de oportunidades oferecidas por esta API como já destacado anteriormente. Aqui se destaca um número oferecido gratuitamente pela própria ferramenta e é separado um espaço que irá armazenar aquilo que a TextArea irá enviar e que posteriormente será enviado ao número de celular solicitado.

Veja com mais clareza os passos anteriores demonstrados com suas respectivas imagens.

5.2.3 Leque de Opções do Twilio visto do Bubble

Como se observa na Figura 35, o Twilio apresenta várias opções como: Envio de mensagem de texto, chamada, mensagem de vídeo entre outros. E neste trabalho, foi testado inicialmente a opção de "Envio de mensagem de texto".

Actions	Twilio - Send Text Message	
	Twilio - Make A Call	
	Twilio - Send A Fax	
	Twilio - Retrieve Text Message	
	Twilio - Run A Studio Flow	
	Twilio - Access Token (Video) - Create	

Figura 35: Plugin Twilio. Fonte: O Autor.

5.2.4 Editando Fluxo de Trabalho através do Botão "Enviar SMS"

Ao clicar no botão "Enviar SMS" temos a opção de "Editar Fluxo de Trabalho" ou colocar uma ação no botão para ele através do Twilio enviar a mensagem SMS propriamente dita, conforme se observa na Figura 36.

Figura 36: Configuração de Evento em "Enviar SMS". Fonte: O Autor.

Aqui eu vou destacar o que desejo que a ferramenta faça que é enviar mensagens de texto SMS e configuro o meu Text e TextArea para captar o número de celular a ser enviado a mensagem e o texto desejado a ser redigido na mensagem, conforme se observa na figura 37.

When	When			
Button Enviar SMS is Button clicked	n Sair is clicked	lick here to add an		
	Twi	ilio - Send text mes	sage	6 🗙
	Fre	om	+12184135668	
Step 1	Step 2		show docu	imentation
Twilio - Send text message 🔶	AirAlert - Clear all		show docu	imentation
	Me	essage		
		TextArea's value		
			Rich show docu	text editor imentation
	At	tachment Image URL	(optional)	
	_			
			Rich show doc.	text editor imentation
	Sta	atus Callback URL (op	tional)	
			Rich show docu	text editor imentation
		Enter your API key		
	Or	nly when Click		
	Ad	ld a breakpoint in deb	oug mode	

Figura 37: Configuração do Plugin Twilio. Fonte: O Autor.

5.2.5 Como obter o número através da ferramenta Twilio?

O número é oferecido de forma gratuita através de um cadastro feito no site da plataforma e é disponibilizado para testes ao usuário, conforme se observa na figura 38 [30].

Figura 38: Tela Inicial do Twilio. Fonte: O Autor.

5.2.6 Recebendo as mensagens pelo Smartphone

Depois de todos esses testes e conceitos importantes sobre o Bubble e o Twilio chega o momento de constatar se de fato as mensagens estão sendo enviadas para o número destino. E como comprovação do teste, logo na Figura 39 vemos as mensagens chegando no número destino através de uma print da tela do Smartphone.

16:34 🕨 🖨 🔟	¥ क़ ₩ .⊪ .⊪ 45%∎					
← 😮 24759	S					
Thursday • 11:32						
Texting with 24759 (SM	S/MMS)					
Sent from your Twilio trial acc Teste!	count -					
Sent from your Twilio trial acc Teste!	count -					
Sent from your Twilio trial acc Teste!	count -					
Yesterday • 21:32	2					
Sent from your Twilio trial acc mundo!	count - Olá					
Sent from your Twilio trial acc mundo!	count - Olá					
21:38 • Vivo						
⊕	1 ©	·III·				
III O	<					

Figura 39: Comprovante de envio de mensagens SMS. Fonte: O Autor.

5.3 Trabalhando com videoconferência

Além de permitir o envio de mensagens SMS, a aplicação também foi codificada para fazer videoconferências. Onde o usuário tem a oportunidade de "criar live", permitindo com que seja criado o link da vídeo chamada que poderá ser compartilhado para que outros participantes possam fazer parte da vídeo chamada.

Na Figura 40 é possível visualizar o botão "criar live" e logo abaixo em: "Link da live disponível abaixo" é possível visualizar o link daquela reunião.

Além do mais, bem na parte inferior da tela é possível observar a chamada de vídeo propriamente dita que dá a chance de se trabalhar as configurações de áudio e vídeo simultaneamente.

Figura 40: Tela de videoconferência. Fonte: O Autor.

Do lado do convidado através do link teremos a visualização exibida na Figura 41, onde é possível ver o total de pessoas na chamada. Há a possibilidade de interação através do chat e inclusive de compartilhamento de telas, como em outras plataformas de videoconferência, tais como o meet.

Aqui é possível até 20 participantes em uma única chamada. E na versão grátis que estamos utilizando, temos 10.000 minutos de participantes gratuitos / mês. A interação via

chat, já citada acima, é bem simples e se torna mais uma das ferramentas disponíveis ao usuário durante a utilização desta plataforma.

Figura 41: Tela de videoconferência do lado do convidado. Fonte: O Autor.

5.3.1 Qual foi a API utilizada na videoconferência?

A API escolhida para esta aplicação se chama "Daily". Ela permite integração de comunicação de voz, vídeo e recursos de IA em tempo real em seus aplicativos. Desde de 2016, sua infraestrutura e seus SDKs nativos que são baseados em WebRTC garantem a melhor qualidade de vídeo possível em diversas redes e dispositivos ao redor do mundo [31].

O padrão WebRTC permite a comunicação em tempo real diretamente nos navegadores. O que torna possível a implementação de serviços flexíveis de áudio e vídeo em páginas da web, aplicativos móveis e aplicativos de desktop [31].

Essa API foi adicionada ao nosso Bubble para possibilitar a criação de salas de videoconferência, como se observa na Figura 42.

Como se pode entender na figura, depois que a API é adicionada à ferramenta Bubble se pode trabalhar com a criação de sala, criação do link de envio aos convidados à reunião e é possível se juntar à sala depois desses passos para poder funcionar a conversa por vídeo, voz e chat.

Vale ressaltar que dentre os seis passos destacados se pode entender a tranquilidade em lidar com a configuração no daily no bubble pelos nomes em destaques, tais como: "Daily -

create room" e "Daily - join room". Em outras palavras, há aqui a possibilidade da criação da sala e o momento em que se junta a ela.

Figura 42: Implementação da daily no Bubble. Fonte: O Autor.

5.4 Envio de Mensagens de Texto via Bubble

Além de enviar mensagem SMS, fazer videoconferência, a aplicação também disponibiliza um chat ou envio de mensagem de texto instantâneo.

Para essa parte da aplicação não foi utilizado nenhuma API, apenas foi programado utilizando os recursos da própria ferramenta Bubble.

Para isso foi criado duas tabelas em nossa base de dados Bubble: conversas e mensagens visualização exibida na Figura 43.

App data New view Primary fields		Application data - All conversas - Development version Copy and restore database Switch to live database								re databas	
		Search for data entries			0 entries (displaying 0) New entry Delete (0)		Delete (0)	Upload	Modify		Bulk
										1 ac	dditional field
Search Views or data types			mensagem	usuario	Created	Created Date Modified Date		Slug		Q Created By	
All conversas	01										
All mensagems	ch /										
Contraction Contraction											
All salas	21										
All Users	01/										

Figura 43: Tabela de Conversas. Fonte: O Autor.
Data types Privacy	App data	Option sets	File manager											
App data	Applicatio	on data - All men	isagems - Develop	ment version						Сору	and restore	database	Switch	to live databas
New view Primary fields	Search	for data entries						0 entries (displaying 0)	New entr	Delete (0)	Upload	Modify		Bulk
														1 additional field
Search Views or data types					texto			Create	ed Date	Modified Date		Slug	Q	Created By
All conversas														
All mensagems														
All salas 🖉 🖉														
All Users 🖉 🖉														

Figura 44: Tabela de Mensagens. Fonte: O Autor.

Logo em seguida, foi trabalhado em cima das telas de interação entre os usuários do chat, no caso cada usuário irá logar na sua conta e depois pesquisar pelo usuário que irá receber sua mensagem. E assim poderá fazer o envio de mensagens para o usuário que escolher, conforme pode ser exibido na Figura 45.

Figura 45: Envio de Mensagem Entre Usuários. Fonte: O Autor.

Observe na Figura 46 a estrutura implementada dentro do próprio Bubble. Aqui foi trabalhado com "SearchBox" para poder ser feita a pesquisa dos nomes salvos no banco de dados. O "ícone" serve como botão para a ação na hora da pesquisa, depois que se digita os nomes. Temos um "Floating Group" que irá guardar o "SearchBox" e o "Repeating Group". (verificar tamanho de fonte)

Ao lado temos outro "Repeating Group" para exibir os diálogos que estão em "Group Message", que basicamente irá exibir as mensagens recebidas e enviadas. Temos um "Multiline Input" e um ícone que irá também dar a ação de envio da mensagem. Ambos estão dentro de um "Floating Group".

Essa é a estrutura Front-end de nossa aplicação. E na parte Back-end acerca de seu funcionamento basicamente meu "Search Box" irá puxar direto da tabela "Users" todos os nomes já salvos nessa base. E quando clicar no ícone ao lado esse nome selecionado será chamado para a conversa que irá ser realizada no "Repeating Group" ao lado ao ser enviado no "Multiline Input" a mensagem propriamente dita de interação com esse usuário selecionado.

Quando o usuário que for enviar a mensagem logar no aplicativo vai verificar as mensagens enviadas anteriormente e vai poder responder de volta selecionando o usuário e respondendo à mensagem.

Figura 46: Estrutura do chat no Bubble. Fonte: O Autor.

5.5 Comprovante de Registro de Software

Em suma, a aplicação foi programada para envio de SMS, envio de mensagem de texto e criação de videoconferência. Em seguida, foi realizada a solicitação para fins de registro de software, conforme se pode observar na Figura 47.

•••

Figura 47: Comprovante de solicitação de Registro de Software. Fonte: O autor.

5.6 Trechos do código fonte utilizado através do Bubble

Como já mencionado, a plataforma Bubble é no-code, programação sem código, mas é válido entender que ela é construída em Javascript e Typescript. Além de que seu funcionamento interno é baseado em Javascript, CSS e HTML [33].

Esses padrões da web são testados, validados, confiáveis e amplamente aceitos, permitindo que desenvolvedores possam aproveitar seus recursos nativos ao criar plugins, a tal ponto que na plataforma é possível a criação dos plugins por outros desenvolvedores [33].

Com o intuito de exibir de forma mais detalhada a linguagem que está por trás da plataforma Bubble, observe o código da tela inicial da aplicação VoIP DGP.

<!doctype html> <html lang="en"> <head> <meta charset="utf-8">

<meta http-equiv="X-UA-Compatible" content="IE=edge,chrome=1">

<title>voip-dgp | Bubble Editor</title>

<script type="text/javascript">

window.bubble_session_uid = '1732542177228x674140839992743000';

</script>

<link rel="icon" type="image/png" href="https://a3f482aa37473c68f97b76bd2e4a3782.cdn.bubble.io/f1530294839424x1435288 42134401200/Icon-no-clearspace.png" /> <script type="text/javascript" src="https://checkout.stripe.com/checkout.js"></script> type="text/javascript">window.previous last editor visit <script = 1741114126665;</script> type="text/javascript">window.gm key <script = "AIzaSyC8WJyCOmtl2wSZ841lranjoHprlnmVB A";</script> <script type="text/javascript">window.bubble new reactivity = false;</script> <script type="text/javascript">window.bubble changelog release = false;</script>

type="text/javascript" crossorigin="anonymous" charset="UTF-8" <script src="/package/early_edit_js/e3fb7a1596d79fe6c2c5690faa560377c0b2511bd2c1888db0c39c8 8b99cbb96/early edit.js"></script>

<script type="text/javascript">window.WORKER URL = '/package/worker js/a4b605a0408db4032d9b7eb9dbcdb9a02fd183342580beaf00d218b519aa b1b6/worker.js';</script>

<link

href="/package/edit css/2b08751ff6d18795f7657bba05ec9398bed4aa85077c22c2597643cb2 957b573/xfalse/edit.css" rel="stylesheet">

type="text/javascript" crossorigin="anonymous" charset="UTF-8" <script src="/package/pre_edit_js/0cf450c1a19e6bdc16e04d5cac93836e5f3d2bf745cfd39e3da251143 bebea5f/pre_edit.js"></script>

type="text/javascript" crossorigin="anonymous" charset="UTF-8" <script src="/package/edit_js/a4b605a0408db4032d9b7eb9dbcdb9a02fd183342580beaf00d218b519a ab1b6/xfalse/edit.js"></script>

type="text/javascript" crossorigin="anonymous" charset="UTF-8" <script src="/package/edit optional js/be43983c0d3ffeeb68d16a5fcd9e51621fb17af2324717191d57 adf8fda94635/xfalse/xfalse/xfalse/xfalse/edit optional.js"></script>

<script< th=""><th>type="text/javascript"</th><th>crossorigin="anonymous"</th></script<>	type="text/javascript"	crossorigin="anonymous"
src="/static/coder	mirror/lib/codemirror.js">	
<link rel="</td"/> <td>"stylesheet" href="/static/codemirror/lib/codemirror</td> <td>or.css"></td>	"stylesheet" href="/static/codemirror/lib/codemirror	or.css">
<script< td=""><td>type="text/javascript"</td><td>crossorigin="anonymous"</td></script<>	type="text/javascript"	crossorigin="anonymous"
src="/static/coder	mirror/mode/javascript/javascript.js">	
<script< td=""><td>type="text/javascript"</td><td>crossorigin="anonymous"</td></script<>	type="text/javascript"	crossorigin="anonymous"
src="/static/coder	mirror/mode/xml/xml.js">	
<script< td=""><td>type="text/javascript"</td><td>crossorigin="anonymous"</td></script<>	type="text/javascript"	crossorigin="anonymous"
src="/static/coder	mirror/mode/jsx/jsx.js">	
<script< td=""><td>type="text/javascript"</td><td>crossorigin="anonymous"</td></script<>	type="text/javascript"	crossorigin="anonymous"
src="/static/coder	mirror/mode/css/css.js">	
<script< td=""><td>type="text/javascript"</td><td>crossorigin="anonymous"</td></script<>	type="text/javascript"	crossorigin="anonymous"
src="/static/coder	mirror/mode/htmlmixed/htmlmixed.js">	
<script< td=""><td>type="text/javascript"</td><td>crossorigin="anonymous"</td></script<>	type="text/javascript"	crossorigin="anonymous"
ara-"/statia/aada	mirror/modo/htmlmixod/htmlmixod is">//sorint>	

src="/static/codemirror/mode/htmlmixed/htmlmixed.js"></script>

type="text/css"

<script type="text/javascript" crossorigin="anonymous" src="/static/codemirror/addon/selection/active-line.js"></script> <script type="text/javascript"> (function(l,e,a,p) { window.UserLeap = function(){U._queue.push(arguments)}

var U = window.UserLeap;U.appId = a;U._queue = [];

a=l.createElement('script');

a.async=1;a.src=e+'?id='+U.appId;

p=l.getElementsByTagName('script')[0];

p.parentNode.insertBefore(a, p);

})(document, 'https://cdn.userleap.com/shim.js', 'vCBJS55mgI');

UserLeap('setUserId', '1732542177228x674140839992743000');

UserLeap('setEmail', 'daniel.pereira@ifma.edu.br');

</script>

<meta name="viewport" content="user-scalable=0, minimal-ui, width=1200" />

<meta name="apple-mobile-web-app-capable" content="yes" />

```
<meta name="apple-mobile-web-app-status-bar-style" content="black-translucent" /> <meta name="google-site-verification"
```

content="88Ar13XH_rSvj7CJtTCL1jWpReoEHqiUFARcvqmUlPs" />

<meta name="description" content="Bubble introduces a new way to build a web application. It's a point-and-click programming tool. Bubble hosts all applications on its cloud platform.">

<meta name="twitter:card" content="summary_large_image" /> <meta property="og:title" content="Bubble Editor - voip-dgp" /> <meta name="twitter:title" content="Bubble Editor - voip-dgp" /> <meta property="og:site_name" content="Bubble" /> <meta name="twitter:site_name" content="Bubble" />

6. CONCLUSÃO E TRABALHOS FUTUROS

Este trabalho teve como objetivo principal oferecer a solução VoIP UEMA para outras instituições de ensino, como o IFMA e o E-TEC. Além disso, buscou-se adaptar a telefonia convencional para a tecnologia de telefonia IP, considerando que a substituição completa da telefonia tradicional não é ideal, pois ela ainda é uma realidade em muitas localidades.

Assim, a solução foi desenvolvida por meio da integração da telefonia analógica com a telefonia IP, incluindo o uso de softphones. Houve a implantação do legado para a telefonia IP tanto para o sistema operacional Windows, quanto para o sistema operacional Linux.

No laboratório de telecomunicações do CCT foi realizado inserido o legado com todos os equipamentos necessários, tais como ATA, Access Point e asterisk com a utilização do Brekeke para windows e feito os devidos testes de ligação.

Já no IFMA Campus Avançado de Rosário, foram realizados os mesmos testes, mas com a utilização do sistema operacional Linux. Ambos os cenários podem ser implementados nos setores públicos como: E-TEC e IFMA Campus Avançado de Rosário.

Foi explorada a possibilidade de utilizar a tecnologia VoIP em uma plataforma no-code, que, inicialmente, permite o envio de mensagens SMS, realização de videoconferências e bate-papo através da própria aplicação.

E isto tendo como base o já existente softphone VoIP UEMA, o qual foi carro-chefe para outros já implementados, como: VoIP Gov MA, VoIP Pitágoras, VoIP Valen. Alcançando desta forma, o objetivo geral e os objetivos específicos.

Para trabalho futuros, temos:

- Implementar uma lista de ramais (a partir de uma simples planilha de Excel com ramais com 8 dígitos com range tipo 1xxxxx até 9xxxxx onde os dois primeiros podem ser utilizados para determinar o Campus, os 2 próximos o setor e os 4 últimos o aluno/professor/técnico/serviço) de forma que o usuário possa fazer busca por nome ou setor ou serviço e ser facilmente atualizada;
- Desenvolver a aplicação no-code para a versão de aplicativo móvel;
- Testar na aplicação no-code a ligação de chamadas.

REFERÊNCIAS

- [1] DUTRA, U. O que é VOIP e como essa tecnologia funciona? Disponível em:
 https://vcx.solutions/voip/#:~:text=Resumindo%2C%20um%20sistema%20de%20telefo nia,VoIP%20e%20um%20dispositivo%20conectado.>. Acesso em 14 de dezembro de 2022.
- [2] TELECO. VOIP I: Telefonia VoIP. Disponível em: https://www.teleco.com.br/tutoriais/tutorialvoipcp1/pagina_3.asp.. Acesso em 14 de dezembro de 2022.
- [3] NVOIP. Telefonia VoIP: saiba tudo sobre essa tecnologia. Disponível em: < https://www.nvoip.com.br/blog/telefonia-voip/.>. Acesso em 14 de dezembro de 2022.
- [4] IP FORCE. Saiba tudo sobre a história do VoIP no Brasil e no mundo. Disponível em:
 https://ipforce.com.br/saiba-tudo-sobre-a-historia-do-voip-no-brasil-e-no-mundo#:~:text
 =Onde%20surgiu%20a%20tecnologia%20VoIP,de%20%E2%80%9CInternet%20Phone %20Software%E2%80%9D.>. Acesso em 04 de fevereiro de 2024.
- [5] PLURI SISTEMAS. Vantagens e Desvantagens entre Telefonia Digital e Analógica. Disponível em: https://www.plurisistemas.com/telefonia-digital-e-analogica/. Acesso em 06 de fevereiro de 2024.
- [6] OLIVEIRA, C. H. R. et al. VoIP University Solution: VoIP UEMA Project. Simpósio Brasileiro de Redes de Computadores e Sistemas Distribuídos (SBRC), 2024. ISSN 2177-9384.
- [7] WITTEL. Qual a diferença entre VoIP e PSTN?.Disponível em:
 <https://blog.wittel.com/qual-a-diferenca-entre-voip-e-pstn/#:~:text=A%20PSTN%20(Pu blic%20Switched%20Telephone,meio%20de%20fios%20de%20cobre.>. Acesso em 12 de fevereiro de 2024.
- [8] LIG-IT. Telefonia analógica e Telefonia IP: qual a diferença?. Disponível em: https://www.ligit.com.br/telefonia-analogica-e-telefonia-ip-qual-a-diferenca/. Acesso em 14 de fevereiro de 2024.

[9] MORAES, M. C. Desenvolvimento de Um Aplicativo nas Plataformas Android e IOS Utilizando Comunicação Segura para Solução VOIP UEMA. UEMA, 2021.

[10] BOUTON, E. A. Multiplexação por Divisão em Multiresolução: Um Novo Sistema Baseado em Wavelets. UFPE, 2006.

[11] TELECO. Telefonia Digital: Multiplexação de Sinais. Disponível em:

<https://www.teleco.com.br/tutoriais/tutorialconvdados/pagina_4.asp#:~:text=Multiple xa%C3%A7%C3%A30%20por%20Divis%C3%A30%20de%20Freq%C3%BC%C3% AAncia,sinal%20no%20espectro%20de%20freq%C3%BC%C3%AAncia.>. Acesso em 16 de fevereiro de 2024.

[12] METROPOLE DIGITAL. Aula 04 - Transmissão de informações. Disponível em:

<https://materialpublic.imd.ufrn.br/curso/disciplina/4/19/4/7>. Acesso em 17 de fevereiro de 2024.

[13] PINTO, E. L. e ALBUQUERQUE, C. P. A Técnica de Transmissão OFDM. Revista Científica Periódica - Telecomunicações, 2002.

[14] ARNDT, D. M. Multiplexação de Sinais. IFSC, 2016.

[15] 4INFRA. O que é um telefone IP?. Disponível em:

https://4infra.com.br/o-que-e-um-telefone-ip/. Acesso em 19 de fevereiro de 2024.

[16] FALEMAIS VOIP. Entendendo as diferenças entre VoIP e telefonia IP. Disponível em: https://www.falemaisvoip.com.br/blog/diferencas-entre-voip-e-telefonia-ip/. Acesso em 20 de fevereiro de 2024.

[17] LIGOU.ME. Entenda a diferença entre porta FXS e FXO. Disponível em:

<https://ligou.me/blog/entenda-a-diferenca-entre-porta-fxs-e-fxo/>. Acesso em 21 de fevereiro de 2024.

[18] VALEN PORTO HOTEL. A melhor parada para quem leva o Brasil para frente. Disponível em:

https://valenportohotel.com.br/valenshopping/. Acesso em 29 de abril de 2024.

[19] CFT. Conselho Federal dos Técnicos Industriais. Disponível em:

<https://www.cft.org.br/>. Acesso em 29 de abril de 2024.

[20] Mobilit. A telefonia fixa vai acabar?. Disponível em:

https://mobilit.com.br/telefonia-fixa-vai-acabar/. Acesso em 29 de abril de 2024.

[21] MAGRO, J. C. Estudo da qualidade de voz em redes IP. Universidade Estadual de Campinas, Faculdade de Engenharia Elétrica e de Computação, 2005.

[22] FERREIRA, C. E. C.; MOTA, A.; MOTA, L. T. M.; SANTANA, W. Sistema VoIP de baixo custo baseado em software livre para propósitos didáticos. Cobenge, 2009.

[23] Hostinger. Hostinger Tutoriais. Disponível em:

<https://www.hostinger.com.br/tutoriais/melhor-distribuicao-linux?utm_campaign=Generic-T utorials-DSA|NT:Se|LO:BR-t4&utm_medium=ppc&gad_source=1&gclid=Cj0KCQiAv628B hC2ARIsAIJIiK_gg0mrwXpUgbBtCvNsTqc_rV0jzdsfVQXPPTanLld_MQ842WRjZkYaAl MtEALw_wcB#1_Ubuntu_Server>. Acesso em 18 de janeiro de 2025.

[24] DelGrande. O que é Asterisk e como revolucionou a telefonia. Disponível em:

<https://delgrande.com.br/blog/o-que-e-asterisk-e-como-revolucionou-a-telefonia/>. Acesso em 18 de janeiro de 2025.

[25] Mailrocketsystems. AsteriskVOIP. Disponível em:

<https://github.com/mailrocketsystems/AsteriskVOIP/tree/main>. Acesso em 18 de janeiro de 2025.

[26] LojaMundi. DICAS ASTERISK - Comandos úteis e arquivos de configuração.Disponível em:

<https://www.lojamundi.com.br/dicas-asterisk?srsltid=AfmBOooc0jnBgvBDtmpSyS54lWaM FtL07gfIIzFFPl2f7oqj7or76PrI>. Acesso em 18 de janeiro de 2025.

[27] PORTAL VOIP. O que é o Microsip. Disponível em:

https://portalvoip.com.br/o-que-e-o-microsip>. Acesso em 18 de janeiro de 2025.

[28] NO CODE STARTUP. Bubble.io | Tudo Sobre a Maior Ferramenta No-Code do Mercado. Disponível em:

<https://nocodestartup.io/bubble/>. Acesso em 19 de janeiro de 2025.

[29] MO.AGENCY. O que é Twilio?. Disponível em:

https://www.mo.agency/blog/what-is-twilio. Acesso em 19 de janeiro de 2025.

[30] Twilio Home. Twilio Console. Disponível em:

<https://console.twilio.com/>. Acesso em 19 de janeiro de 2025.

[31] Daily. Daily. Disponível em:

<https://docs.daily.co/>. Acesso em 11 de fevereiro de 2025.

[32] Brekeke. Disponível em:

<https://brekeke.com/>. Acesso em 03 de março de 2025.

[33] Comunidade sem codar. Disponível em:

<https://www.semcodar.com.br/bubble-io/#:~:text=Sim%2C%20%C3%A9%20poss%C3%A Dvel%20inserir%20c%C3%B3digos,estender%20as%20funcionalidades%20da%20plataform a.>. Acesso em 04 de março de 2025.

[34] RIPARDO, L. R. S. Telefonia IP de baixo custo (TBC) baseada no protocolo IP para a UEMA e secretarias do governo do estado (Projeto TBC). 2017. 23 f. Projeto de pesquisa de extensão – Universidade Estadual do Maranhão, Orientação de Carlos Henrique Rodrigues de Oliveira.

[35] IANA Internet Assigned Numbers Authority. Disponível em:

<https://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers. xhtml?search=5060>. Acesso em 19 de março de 2025.