UNIVERSIDADE ESTADUAL DO MARANHÃO CENTRO DE CIÊNCIAS TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL

CAIO ANTÔNIO COSTA OLIVEIRA

CONTRIBUIÇÃO AO ESTUDO DO VENTO SINTÉTICO EM EDIFÍCIOS

CAIO ANTÔNIO COSTA OLIVEIRA

CONTRIBUIÇÃO AO ESTUDO DO VENTO SINTÉTICO EM EDIFÍCIOS

Trabalho de Conclusão de Curso apresentado ao curso de graduação em Engenharia Civil – UEMA, como requisito para obtenção do título de Bacharel em Engenharia Civil.

Orientador: Prof. Dr. Rodrigo de Azevedo Neves.

Oliveira, Caio Antônio Costa.

Contribuição ao estudo do vento sintético em edifícios / Caio Antônio Costa Oliveira. – São Luís, 2019.

179f

Monografia (Graduação) – Curso de Engenharia Civil, Universidade Estadual do Maranhão, 2019.

Orientador: Prof. Dr. Rodrigo de Azevedo Neves.

1. Vento. 2. Método do vento sintético. 3. Análise. 4. Estabilidade. I. Título

CDU: 624.042.4

CAIO ANTÔNIO COSTA OLIVEIRA

CONTRIBUIÇÃO AO ESTUDO DO VENTO SINTÉTICO EM EDIFÍCIOS

Trabalho de Conclusão de Curso apresentado ao curso de graduação em Engenharia Civil – UEMA, como requisito para obtenção do título de Bacharel em Engenharia Civil.

Orientador: Prof. Dr. Rodrigo de Azevedo Neves.

Aprovado em: 04 / 12 / 2019

Prof. Dr. Rodrigo de Azevedo Neves

Prof. Orientador

Universidade Estadual do Maranhão

Prof. Me. Clodoaldo César Malheiros Férreira

Membro titular

Universidade Estadual do Maranhão

Prof. Me. Calo César Pereira de Aguiar

Membro titular

Universidade Estadual do Maranhão

AGRADECIMENTOS

Primeiramente, agradeço a Deus por toda a minha trajetória. Todo esforço é para maior glória de Seu nome.

À Sagrada Eucaristia, por renovar a substância da alma dos que buscam a Verdade como uma Pessoa.

Aos meus pais e minha família, sobretudo aos meus avós Simay e Carlos, por todas as oportunidades disponibilizadas ao longo da minha vida.

Ao meu orientador Rodrigo Neves, pelas sugestões e conselhos ao longo deste período.

Aos meus primos e irmão, Eduardo, Luis Felipe, Junior e Monize pelo companheirismo de sempre.

Aos meus amigos Marcus, Natália, Mateus, Manel, Azevedo, Kayllon, Clodoaldo, Nicolas e Andressa, pela fortaleza nos caminhos já trilhados.

Aos engenheiros Luciano Carneiro Reis e Francisco de Assis Gonçalves, por proporcionarem a minha evolução profissional quando aos mesmos foi pedida uma chance.

À Ana Beatriz, MM, por me motivar a buscar sempre o melhor, em todos os âmbitos possíveis.

RESUMO

Este trabalho analisa duas metodologias de obtenção dos esforços devidos ao vento em edificações, a metodologia discreta da ABNT NBR 6123:1988 e o Método do Vento Sintético, proposto por Franco (1993). Através das forças nodais encontradas pelos dois métodos, foi comparado as ações resultantes e seus efeitos, como diferença de esforços solicitantes, deslocamentos horizontais, montagem do perfil de forças ao longo da estrutura e avaliação de parâmetros de estabilidade global. Foram modeladas nove edificações, de quatro, de oito e doze pavimentos, com três casos de carregamento em cada um, sendo respectivamente, o carregamento normativo, o carregamento estático do vento sintético e o carregamento flutuante do vento sintético. Ao final foram gerados os resultados para comparação dos resultados finais e obter a avaliação do impacto do método de obtenção da carga de vento em edificações.

Palavras-chave: Vento. Método do Vento Sintético. Análise. Estabilidade.

ABSTRACT

This study analyzes two methodologies for the use of wind resources in building a discrete methodology of ABNT NBR 6123:1988 and the Synthetic Wind Method, approached by Franco (1993). Through the nodal forces exhibited by the two methods, they were observed as actions and their effects, such as difference of stresses, horizontal displacements, force profile assembly along the structure and evaluation of global stability tests. Nine editions of four, eight and twelve floors were modeled, with three loading cases in each, namely normative loading, the static loading and floating load of synthetic wind. In the end, the results were generated to compare the final results and obtains an impact assessment of method of using wind load in editions

Keywords: Wind. Synthetic Wind Method. Analyzes. Stability.

LISTA DE FIGURAS

Figura 01 – Isopletas de velocidade básica	15
Figura 02 – Distribuição do Fator Topográfico a partir da posição da edificação . Figura 03: Parâmetros de altura	16 21
Figura 06: Esquemas de forças devidas ao vento em uma edificação	
5'	
Figura 07: Considerações para classificação de incidência do vento	24 24
Figura 08 : Valores de Ca para edificações paralelepipédicas de baixa turbulênc	
. Igara co. Taloreo de da para cambações paraleiopipealeae de baixa tarbaiene	25
Figura 09: Coeficiente Ca para edificações paralelepipédicas em vento de alta	
turbulência	
Figura 10: Ilustração da Área Efetiva.	_
Figura 10. ilustração da Area Eletiva.	
Fonte: QiSuporte, 2019	
Figura 11 – Espectro de Potência Davenport	28
Figura 12- Sistema com 1 GDL	
Figura 13: Frequência natural obtido pelo SAP 2000	
Figura 14 – Rajadas equivalentes	
- Igara	
	39
Figure 15: Fixes padrãos do modelo	
Figura 15: Eixos padrões do modelo	
Figura 16: Numeração nodal do eixo XZ	_
Figura 17: Numeração Nodal do eixo YZ	44
Figura 18: Planta de Forma MOD04	
Cincuration Planta da farma MODOO	45
Figura19: Planta de forma MOD08	45
Figura 20: Planta de forma do MOD12	
	46
Figura 21: Áreas de influência nodais	
Figura 22: Função da força de arrasto pela altura	
Figura 23: Distribuição das forças segundo a NBR 6123 na direção X+	
Figura 24: Distribuição das forças segundo a NBR 6123 na direção Y+	48
Figura 25: Modo de frequência fundamental – MOD04	
Figure 00: Made de freguêncie fundamental MODO	
Figura 26: Modo de frequência fundamental – MOD08Figura 27: Modo de frequência fundamental – MOD12	
Figura 27. Modo de frequencia fundamental – MOD12	

Figura 28: Quantidade de componentes de um vetor de força dinâmica	
	52
Figura 29: Perfil de forças do vento ao longo da estrutura: MOD04- Plano YZ	
Figura 30: Perfil de forças do vento ao longo da estrutura: MOD04 – PLANO XZ	55
Figura 31: Perfil de forças do vento ao longo da estrutura: MOD08 – Plano YZ	56
Figura 32: Perfil de forças do vento ao longo da estrutura: MOD08 – Plano XZ	57
Figura 33: Perfil de forças do vento ao longo da estrutura: MOD12 – Plano YZ	58
Figura 34: Perfil de forças do vento ao longo da estrutura: MOD12 – Plano XZ	59
Figura 36: Deslocamentos horizontais do MOD04 - VT_Y+	65
Figura 38: Deslocamentos horizontais do MOD08 – VT_Y+	67
Figura 39 Deslocamentos horizontais do MOD12 - SC_Y+	68
Figura 40: Deslocamentos horizontais do MOD12 – VT_Y+	70
Figura 41: Esforço Normal no Pilar P1	72
Figura 42: Momento Fletor no Pilar P1	73
Figura 43: Esforço Axial no Pilar P5	74
Figura 45: Esforço axial no Pilar P8	76
Figura 46: Momento Fletor no Pilar P8	77
Figura 47: Esforço Axial no Pilar P12	78
Figura 48: Momento Fletor no Pilar P12	79
Figura 61: Direção de atuação do momento fletor devido ao vento	80

LISTA DE TABELAS

Tabela 01 – Fator topográfico em função da altura e inclinação	16
Tabela 02 – Categorias de terreno	18
Tabela 03 – Classes das edificações	19
Tabela 04 – Fator de Rajada	20
Tabela 05 – Valores do fator estatístico S3	22
Tabela 06: Módulo secante estimado em função da resistência	39
Tabela 07: Modelos analisados	40
Tabela 08: Ações permanentes diretas agrupadas	41
Tabela 09: Ações variáveis consideradas conjuntamente	42
Tabela 10: Fatores de combinação e de redução para ações variáveis	
Tabela 11: Combinações última normais	
Tabela 12: Forças do vento no Eixo YZ, em kN	
Tabela 13: Diferença percentual no módulo da força no Eixo YZ	
Tabela 14: Forças do vento no Eixo XZ, em kN	
Tabela 15: Diferença Percentual no módulo da força, no Eixo XZ	
Tabela 16: Forças do vento no Eixo YZ, em kN	
Tabela 17: Diferença percentual no módulo da força, no Eixo YZ	56
Tabela 18: Forças do vento no eixo XZ, em kN	57
Tabela 19: Diferença percentual no módulo da força, em kN	
Tabela 20: Forças do vento no eixo YZ, em kN	
Tabela 21: Diferença percentual no módulo da força, em kN	
Tabela 22: Forças do vento no Eixo XZ, em kN	
Tabela 23 - Diferença percentual no módulo da força, em kN	
Tabela 24: Coeficientes γz para os modelos analisados	
Tabela 25: Comparação entre os coeficientes γz para o MOD04 SC_Y+	
Tabela 26: Comparação entre os coeficientes γz para o MOD08 SC_Y+	
Tabela 27: Comparação entre os coeficientes γz para o MOD12 SC_Y+	
Tabela 28: Comparação entre os coeficientes γz para o MOD04 VT_Y+	
Tabela 29: Comparação entre os coeficientes γz para o MOD08 VT_Y+	
Tabela 30: Comparação entre os coeficientes γz para o MOD12 VT_Y+	
Tabela 31: Valores dos deslocamentos horizontais do MOD04 – SC Y+, em mm	
Tabela 32: Diferença percentual do MOD04 – SC Y+	
Tabela 33: Valores dos deslocamentos horizontais do MOD04 – VT_Y+, em mm	
Tabela 34: Diferença percentual do MOD4 – VT_Y+	
Tabela 35: Valores dos deslocamentos horizontais do MOD08 – SC_Y+	05
Tabela 36: Diferença percentual do MOD08 – SC_Y+	00
Tabela 39: Valores dos deslocamentos horizontais do MOD08 – VT_Y+	00
Tabela 40: Diferença percentual do MOD08 VT Y+	
Tabela 41: Valores dos deslocamentos horizontais do MOD12 – SC Y+	
Tabela 42: Diferença percentual do MOD12 – SC_Y+	
Tabela 43: Deslocamentos horizontais do MOD12 – VT_Y+	us 70
Tabela 44: Diferença percentual do MOD12 – VT_Y+	70 71
Tabela 45: Esforço Axial no Pilar P1	
Tabela 46: Diferença percentual do esforço axial do Pilar P1	
Tabela 47: Momento Fletor no Pilar P1	
Tabola 48: Diference percentual de mamonte fleter no Diler D1	ט / מד
Tabela 48: Diferença percentual do momento fletor no Pilar P1	/J //
Tabela 50: Diferença percentual do esforço axial no Pilar P5	/4 1
ı abela bu. Diletetiya petcetildi dü esibiyu axlalılu Fildi FoFormilli	/ 4

Tabela 51: Momento Fletor no Pilar P5	75
Tabela 52: Diferença percentual do momento fletor no Pilar P5	75
Tabela 53: Esforço Axial no Pilar P8	
Tabela 54: Diferença percentual do esforço axial no Pilar P8	
Tabela 55: Momento Fletor no Pilar P8	
Tabela 56: Diferença percentual do momento fletor no Pilar P8	77
Tabela 57: Esforço axial no Pilar P12	
Tabela 58: Diferença percentual do esforço axial no Pilar P12	
Tabela 59: Momento Fletor no Pilar P12	
Tabela 60: Diferença percentual do momento fletor no Pilar P12	
3 1	

SUMÁRIO

1	IN	rodução	13
	1.1	Justificativa	13
	1.2	Objetivo Geral	14
	1.3	Objetivos específicos	14
2	RE	FERÊNCIAL TEÓRICO	14
	2.1	Método Discreto da norma NBR 6123	14
	2.3	.1. Força de Arrasto	22
	2.2	Vento Sintético	26
	2.2	.1 Velocidade Básica do Vento	27
	2.4	.2 Decomposição do Espectro de Potencia	29
	2.2		
	2.2	.4 Centro de Rajada	34
	2.2	.5 Parcela média e Parcela flutuante	35
	2.2	.6 Harmônicos de Forças	36
	2.3	Gama Z	37
3	ME	TODOLOGIA	39
	3.1	Caracterização do Modelo	39
	3.1	.1 Combinações de ações	40
	3.1	.2 Aplicação das cargas de vento	43
	3.1	.3 Força do Vento segundo a NBR 6123:1988	47
		.4 Força do Vento segundo o Método do Vento Sintético (Franco,1993)	
4	An	álise dos Resultados	53
	4.1	- Força do Vento	53
	4.2	Estabilidade Global	61
	4.3	Deslocamentos:	63
	4.4	Esforços solicitantes	71
5	CC	NCLUSÃO	
	5 1	Sugestões para futuros trabalhos	82

1 INTRODUÇÃO

Na engenharia civil moderna, o uso de edificações cada vez maiores se torna mais recorrentes, em forma diretamente proporcional com o avanço do tempo. As causas de tal fenômenos são óbvias, pelo fato das superlotações horizontais da cidades, aumento populacional e arquiteturas mais arrojadas, a necessidade da verticalização das construções no cenário mundial fica bastante visível.

Segundo Brasil (2015), quando se faz a análise dinâmica de uma estrutura supondo-se conhecidos por completo os históricos das excitações e as características mecânicas do sistema, a resposta poderá ser obtida de forma determinística. Porém, como o fenômeno analisado é o vento, em sua essência trata-se de um fenômeno aleatório, no presente nível da meteorologia e hidrologia.

Segundo Santos (2018), um dos fatores a serem considerados em uma edificação e seu posterior dimensionamento se trata das forças dos ventos incidentes em sua superfície, contribuindo para uma carga lateral elevada, solicitações que não ocorrem em edificações de baixa altura (como efeitos de torça, efeito P-Delta, interações de segunda ordem, etc..).

Na busca por outra alternativa de análise de vento, com excludente a ABNT:NBR 6123:1988, será analisada a técnica de estudo do vento desenvolvida pelo professor Mário Franco, o Método do Vento Sintético (FRANCO, 1993), para a comparação com os critérios normativos já existentes.

1.1 Justificativa

Tendo em vista a busca de dimensionamentos cada vez mais eficientes e condizentes com os resultados reais obtidos em campo, esse trabalho surge com o intuito de contribuir nos estudos acerca da influência do método do vento sintético em edifícios, em várias alturas, e compara-lo com os resultados obtidos pela análise com a norma NBR 6123:88, tendo alguns parâmetros comparativos, como análise

da estabilidade global, a redistribuição de esforços solicitantes, a comparação de deslocamentos horizontais e a forma do perfil de forças devidas ao vento ao longo da estrutura.

1.2 Objetivo Geral

Analisar a influência do método do vento sintético em edificações e comparar os efeitos obtidos com as respostas encontradas pela análise feita a partir da ABNT NBR 6123:1988.

1.3 Objetivos específicos

- Definir o conceito do método do vento sintético e aplicar nas edificações escolhidas;
- Calcular no SAP 2000 o modelo escolhido para a edificação variando o número de pavimentos, com o intuito de comparar as respostas obtidas por ambos os métodos utilizados;
- Comparar os resultados encontrados para cada modelo calculado.

2 REFERÊNCIAL TEÓRICO

2.1 Método Discreto da norma NBR 6123

Será descrito a seguir o procedimento de cálculo da carga estática devido a força do vento, devido as prescrições normativas na ABNT NBR 6123:1988.

A pressão dinâmica do vento "q" é a correspondente a velocidade característica V_k , em condições normais de pressão, segundo definição encontrada na NBR 6123 (ABNT, 1988). É expressa através da fórmula:

$$q = 0.613. V_k^2 (N/m^2) (1)$$

O objetivo com os dados de pressão dinâmica é a obtenção das forças estáticas devidas ao vento. A velocidade característica é dada a partir da expressão:

$$V_k = V_o. S_1. S_2. S_3 (m/s)$$
 (2)

Sendo:

 V_o — Velocidade básica do vento. Segundo definição encontrada no tópico 5.1 da NBR 6123 (ABNT, 1988): "velocidade de uma rajada de 3 s, excedida na média uma vez em 50 anos, a 10 m acima do terreno, em campo aberto e plano". Para a determinação da velocidade básica do vento, é utilizado um mapa de velocidades, com variações a cada 5m/s chamado de isopletas, contido na página 6 da NBR 6123:



Figura 01 – Isopletas de velocidade básica

 S_1 — Fator topográfico. Leva em consideração as variações do relevo no entorno da edificação analisada. Segundo o tópico 5.2 da NBR 6123 (ABNT, 1988), para terrenos planos ou fracamente acidentados, tem-se que $S_1 = 1,0$. Já para edificações que se localizem em taludes ou morros, no ponto B da figura 02, o fator topográfico é obtido

através de uma função da altura (z), medido a partir da superfície do terreno do ponto estudado, da diferença de nível (d) entre a base e o topo da superfície local (seja talude, seja morro).

Figura 02 - Distribuição do Fator Topográfico a partir da posição da edificação

Fonte: ABNT NBR 6123/1988, p.7

Para inclinações de θ (figura 02) maiores que 3° , o fator topográfico deve ser calculado de acordo com as expressões da tabela 01:

Tabela 01 – Fator topográfico em função da altura e inclinação

Inclinação do Talude/Morro (θ)	Fator Topográfico (S_1)
θ ≤ 3 °	$S_1(z) = 1.0$
$6^{\circ} < \theta < 17^{\circ}$	$S_1(z) = 1.0 + \left(2.5 - \frac{z}{d}\right) \cdot \tan(\theta - 3^\circ) \ge 1$
$\theta \ge 45^{\circ}$	$S_1(z) = 1.0 + \left(2.5 - \frac{z}{d}\right) \cdot 0.31 \ge 1$

Fonte: ABNT NBR 6123/1988, adaptado.

 S_2 — Fator de Rugosidade do terreno, dimensões da edificação e altura sobre o terreno. O fator S_2 leva em consideração o perfil de velocidade do vento na atmosfera conforme o tipo de terreno (Bronzatto,2012 apud Carril Junior, 2000, p.15). Logo, o gradiente da velocidade do vento, o tipo e condição do solo no entorno da edificação e a geometria da estrutura fornecem o valor final do fator S_2 .

A rugosidade do solo tem papel fundamental e de direta influencia no gradiente de velocidades do vento. Segundo Martins (2008), a rugosidade da superfície é a propriedade física que descreve a ação da superfície terrestre na redução do momentum e na absorção do impacto dos ventos. Reis (2016) acrescenta que a rugosidade do terreno controla o valor da tensão de cisalhamento e a velocidade de atrito. Logo, quanto mais rugosa for a superfície, maior será a tensão de cisalhamento junto à superfície.

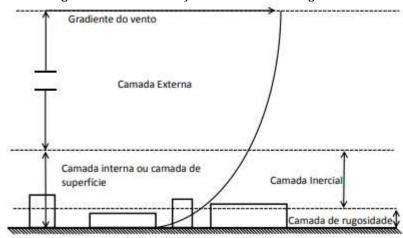


Figura 03 – Determinação da camada de rugosidade.

Fonte: Marshall, 1998 apud Reis, 2016, p.18

Os requisitos da NBR 6123 (ABNT,1988) para a rugosidade são divididos em três segmentos principais:

- Categoria de Rugosidade;
- II. Dimensões da edificação;
- III. Altura sobre o terreno.

Tais categorias serão destrinchadas abaixo:

I. Categoria de rugosidade

Para os fins normativos, a rugosidade do terreno é classificada em cinco categorias:

Tabela 02 – Categorias de terreno.

Categorias	Exemplo
I	Superfícies lisas de grandes dimensões, com mais de 5 km de extensão, medida na direção e sentido do vento incidente. Exemplos: - Mar Calmo; - Lagos e rios; - Pântanos sem vegetação.
II	Terrenos abertos em nível ou aproximadamente em nível, com poucos obstáculos isolados, tais como árvores e edificações baixas. Exemplos: - Zonas costeiras planas; - Pântanos com vegetação rala; - Campos de aviação; - Pradarias e charnecas; - Fazendas sem sebes ou muros. A cota média do topo dos obstáculos é considerada inferior ou igual a 1,0 m.
III	Terrenos planos ou ondulados com obstáculos, tais como sebes e muros, poucos quebra-ventos de árvores, edificações baixas e esparsas. Exemplos: - Granjas e casas de campo, com exceção das partes com matos; - Fazendas com sebes e/ou muros - Subúrbios a considerável distancia do centro, com casas baixas e esparsas. A cota média do topo dos obstáculos é considerada igual a 3,0m.
IV	Terrenos cobertos por obstáculos numerosos e pouco espaçados, em zona florestal, industrial ou urbanizada. Exemplos: - Zonas de parques e bosques com muitas árvores; - Cidades pequenas e seus arredores; - Subúrbios densamente construídos de grandes cidades;

	- Áreas industriais plena ou parcialmente desenvolvidas. A cota média do topo dos obstáculos é considerada igual a 10 m. Esta categoria também inclui zonas com obstáculos maiores e que ainda não possam ser consideradas na categoria V.
V	Terrenos cobertos por obstáculos numerosos, grandes, altos e pouco espaçados. Exemplos: - Florestas com árvores altas, de copas isoladas; - Centros de grandes cidades; - Complexos industriais bem desenvolvidos. A cota média do topo dos obstáculos é considera igual ou superior a 25 m.

Fonte: ABNT, 1988, p.8

II. Dimensões da edificação

Para as dimensões da edificação em análise, a norma brasileira 6123/1988 define classes de edificações, nas quais abrange intervalos de dimensões para classificação da construção, sendo elas definidas na tabela:

Tabela 03 – Classes das edificações

Classe Características		
Classe A	Todas as unidades de vedação, seus elementos de fixação e peças individuais de estruturas sem vedação. Toda edificação na qual a maior dimensão horizontal ou vertical não exceda 20 m.	
Classe B	Toda edificação ou parte de edificação para a qual a maior dimensão horizontal ou vertical da superfície frontal esteja entre 20 m e 50 m.	
Classe C	Toda edificação ou parte de edificação para a qual a maior dimensão horizontal ou vertical da superfície frontal exceda 50 m.	

Fonte: ABNT, 1988, p.9

III. Altura sobre o terreno

Para a determinação final do fator S_2 , utiliza-se a equação 3:

$$S_2 = b.F_r. \left(\frac{z}{10}\right)^p \tag{3}$$

Onde:

- z − Altura, em metros, medida a partir do nível geral do terreno;
- b Parâmetro meteorológico ligado à rugosidade do terreno e classe da obra;
- p Expoente da lei potencial de variação do parâmetro;
- F_r Fator de rajada.

•

Segundo Santos (2018), o fator de rajada é o ente que consegue transformar a velocidade de rajada medida de 3 segundos na velocidade média horária. Este fator corresponde a classe da edificação, segundo a NBR 6123 (ABNT, 1988), expressa na tabela 04:

Tabela 04 – Fator de Rajada

Classe	Fator de Rajada
A	$F_r = 1,00$
В	$F_r = 0.98$
С	$F_r = 0.90$

Fonte: Santos, 2018 (Adaptado).

A NBR 6123 (ABNT, 1988) preconiza os valores do parâmetro meteorológico e do expoente da lei potencial de variação, de acordo com a altura de camada atmosférica máxima de cada categoria, conforme ilustra a figura 03:

Figura 03: Parâmetros de altura

Categoria	z,	Parametro	Classes		
Gategoria	(m)	Parametro	A	В	С
	b	1,10	1,11	1,12	
15	250	р	0,06	0,065	0,07
- 8		ь	1,00	1,00	1,00
н	300	F,	1,00	0,98	0,95
A		p	0,085	0,09	0,10
4	III 350	b	0,94	0,94	0,93
III 350	р	0,10	0,105	0,115	
B.	420	ь	0,86	0,85	0,84
IV	420	p	0,12	0,125	0,135
V 500	500	ь	0,74	0,73	0,71
	р	0,15	0,16	0,175	

Fonte: NBR 6123, 1988, p.9

 S_3 — Fator Estatístico. Conforme item 5.4 da NBR 6123, tal fator é baseado em conceitos estatísticos. Considera-se o grau de segurança da estrutura, além de sua vida útil em tempo de projeto. Consta a seguinte definição:

Segundo a definição de 5.1, a velocidade básica do V_o é a velocidade do vento que apresenta um período de recorrência médio de 50 anos. A probabilidade de que a velocidade V_o seja igualada ou excedida neste período é de 63 %. O nível de probabilidade (0,63) e a vida útil (50 anos) adotados são considerados adequados para edificações normais destinadas a moradias, hotéis, escritórios, etc. (ABNT, NBR 6123, 1988, p.10)

Para tal quantificação dos dados, a norma traz no seu escopo alguns valores pré-definidos para o fator estatístico, conforme elencado a seguir na tabela 05:

Tabela 05 – Valores do fator estatístico S_3

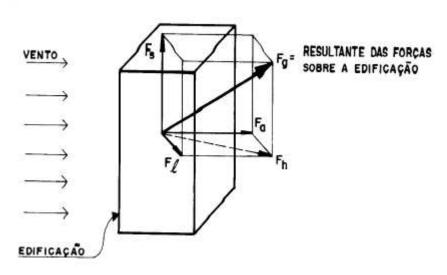
Grupo	Descrição	S_3
1	Edificações cuja ruína total ou parcial pode afetar a segurança ou possibilidade de socorro a pessoas após uma tempestade destrutiva (hospitais, quartéis de bombeiros e de forças de segurança, centrais de comunicação, etc.).	1,10
2	Edificações para hotéis e residências. Edificações para comércio e indústria com alto fator de ocupação.	1,00
3	Edificações e instalações industriais com baixo fator de ocupação (depósitos, silos, construções rurais, etc.).	0,95
4	Vedações (telhas, vidros, painéis de vedação, etc.).	0,88
5	Edificações temporárias. Estruturas dos grupos 1 a 3 durante a construção	0,83

Fonte: ABNT, NBR 6123, 1988, p.10

2.3.1. Força de Arrasto

Segundo Pitta (1987), a força global de uma edificação (ou parte dela) é obtida pela soma vetorial das forças devidas ao vento que atuam em tal construção. O coeficiente de força global pode ser obtido através da seguinte expressão:

$$C_g = \frac{F_g}{q.A_e} \tag{4}$$


Sendo:

• F_g – Força Global;

- q − Pressão Dinâmica;
- A_e Área referente a edificação.

Logo, em uma edificação exposta a ação do vento, algumas forças atuam sobre a estrutura daquele, sendo decompostas na figura 06:

Figura 06: Esquemas de forças devidas ao vento em uma edificação.

Fonte: Pitta (1987).

Conforme a figura 06 revela, componente da força global que está na direção paralela ao vento é a chamada força de arrasto, de suma importância e interesse para a análise de edifícios de múltiplos andares sendo definida de forma similar a força global:

$$F_a = C_a.q.A_e \tag{5}$$

Sendo:

- q Pressão dinâmica de obstrução (N/m²);
- A_e Área frontal efetiva (m²);
- C_a Coeficiente de arrasto.

A abordagem da norma 6123 em relação ao coeficiente de arrasto pressupõe, antes de sua determinação quantitativa, uma análise qualitativa da

posição da edificação em relação a vizinhança e altura média desta. Para tal, ela considera dois tipos de incidência do vento: alta turbulência e baixa turbulência.

No item 6.5.3 da NBR 6123, a edificação é considerada como de alta turbulência quando sua altura não excede duas vezes a altura média das edificações nas vizinhanças, estendendo-se estas, na direção e no sentido do vento incidente, a uma distância de:

- $d_{min} = 500$ m, para uma edificação de até H = 40 m de altura;
- $d_{min} = 1000$ m, para uma edificação de até H = 55 m de altura;
- $d_{min} = 2000$ m, para uma edificação de até H = 70 m de altura;
- $d_{min} = 3000$ m, para uma edificação de até H = 80 m de altura.

A figura 07 a seguir ilustra graficamente estas situações:

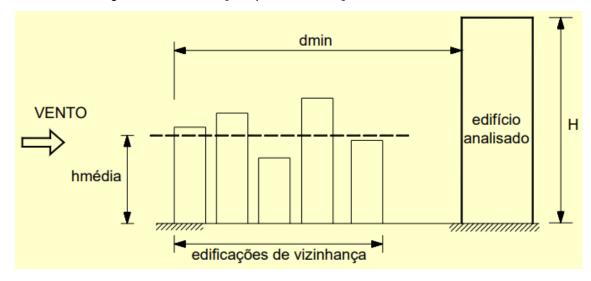


Figura 07: Considerações para classificação de incidência do vento

Fonte: Alva, UFMS

Caso a edificação em análise não cumpra estes requisitos, é considera de baixa turbulência.

Após a consideração do tipo de incidência da região analisada (o local onde a edificação em estudo e/ou projeto está imersa), a norma 6123 preconiza algumas recomendações de cálculo para o coeficiente de arrasto para algumas geometrias de formas conhecidas, como a retangular:

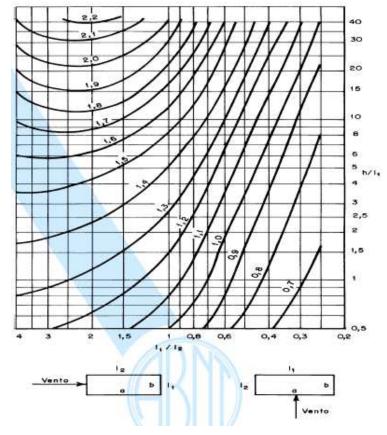


Figura $\it O8$: Valores de $\it C_a$ para edificações paralelepipédicas de baixa turbulência.

Fonte: ABNT NBR 6123, 1988, p.20.

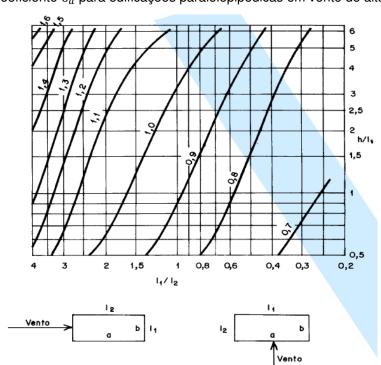


Figura 09: Coeficiente \mathcal{C}_a para edificações paralelepipédicas em vento de alta turbulência

Fonte: ABNT NBR 6123, 1988, p.24

Tais ábacos são em função de alguns parâmetros da edificação, como as dimensões em planta L_1 e L_2 (que alternam entre si de acordo com a direção do vento, seja 0° ou 90°), e da altura total do edifício h.

Cabe destacar que, por inferência dos gráficos, que os coeficientes de arrasto de uma edificação com incidência de baixa turbulência são maiores que quando comparado ao seu oposto. O que indica, por proporcionalidade da expressão da força de arrasto, que os carregamentos em baixa turbulência são maiores que os de alta incidência de turbulência.

Para a área efetiva a ser considerada no cálculo da força de arrasto, o valor de A_e é definido como a área de projeção ortogonal da edificação sobre o plano perpendicular à direção de atuação do vento, também chamada de área de sombra. É basicamente a área da fachada onde será aplicada a carga de vento. A figura 10 ilustra, em um modelo simplificado, a existência desta área:

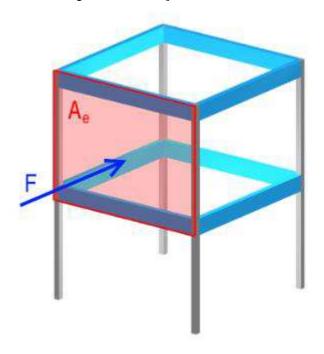


Figura 10: Ilustração da Área Efetiva.

Fonte: QiSuporte, 2019.

2.2 Vento Sintético

O método do vento sintético é uma metodologia não normativa de cálculo de esforços devidos ao vento, desenvolvido por Franco (1993). O método é fundamentalmente baseado no método estatístico de Monte Carlo para a simulação

das pressões flutuantes do vento que atuam na estrutura em estudo. Logo, é considerado um processo de determinação aleatória das forças do vento.

Por premissa, admite-se a incidência aleatória do vento sobre a estrutura, e que a mesma responda a um carregamento composto por duas parcelas, a parcela média e a parcela flutuante. Lista-se, a seguir, o roteiro para a aplicação do Método do Vento Sintético em uma análise discreta:

- Adota-se uma velocidade básica de projeto;
- Determina-se o Espectro de Potência;
- Decompõe-se o Espectro de Potência;
- Faz-se uma correlação espacial de velocidades;
- Busca-se o centro de rajada;
- Calcula-se a parcela média e parcela flutuante;
- Distribui-se os harmônicos de força nos nós.

2.2.1 Velocidade Básica do Vento

A velocidade média de projeto, adotada no cálculo da pressão dinâmica, é referida na NBR 6123 como sendo aquela com duração de 10 minutos (t=600 segundos), a 10 metros de altura. No Método do Vento Sintético, Franco (1993) adotou uma generalização para a facilitação da metodologia, onde para o cálculo da velocidade de projeto, utiliza-se a expressão da velocidade característica da NBR 6123 para a categoria II à altitude de 10 metros. Logo, a expressão reduz-se a:

$$V_p = 0.69. V_0. S_1 S_3 (m/s)$$
 (6)

Blessman (1998) define o espectro de potência de um fenômeno aleatório como a distribuição da energia contida neste fenômeno para as diversas frequências analisadas. Matematicamente, segundo Holmes (2007), o espectro de potência determina a contribuição das parcelas referentes a cada frequência para a variância da série.

Aplicado ao estudo do vento, corresponde ao conjunto de parcelas que define o carregamento de vento ao longo do período de análise (Santos, 2018). Para

tal, Franco (1993) propôs a formulação do Espectro de Davenport para o método, que é representado pela equação:

$$\frac{f.S(f)}{u_*^2} = \frac{2.X_1^2}{3.\left(1 + X_1^2\right)^{4/3}} \tag{7}$$

$$X_1 = \frac{1220.f}{\overline{V_{10}}} \tag{8}$$

Sendo:

- S(f) é o espectro de potência do vento;
- f é a frequência de rajadas;
- \bar{V}_{10} é a velocidade média em um tempo de 10 minutos;
- u_*^2 é a velocidade de cisalhamento do vento;
- X₁ é a relação entre a frequência de rajada e a velocidade média do vento para o intervalo de 600 segundos.

O espectro de potência do vento, por sua natureza estatística, possui uma distribuição de variâncias das frequências ao logo do tempo analisado, com explícito no gráfico a seguir:

- Espectro de potência Davenport $Sr(f)\coloneqq \frac{4\cdot x(f)^2}{4}$ (FRANCO, 1993): $(1+x(f)^2) \cdot f$

Figura 11 – Espectro de Potência Davenport

Fonte: Elaborado pelo Autor

2.4.2 Decomposição do Espectro de Potencia

A decomposição do espectro de potência é necessária ao método para a obtenção da parcela flutuante do vento, segundo Franco (1993). Cunha (2012) recomenda que o carregamento de vento deve ser desagregado em *m* harmônicos, sendo no mínimo de 12, onde os quais devem abranger pelo menos o primeiro modo de vibração da estrutura.

Carril Jr (2000), em sua tese propõe que a parcela flutuante seja determinada pela seguinte expressão:

$$p'(t) \cong \sum_{k=1}^{m} C_k \cdot \cos\left(\frac{2\pi}{T_R \cdot r_k} - \theta_k\right) \tag{9}$$

$$C_k = \sqrt{2. \int_{f_{pk}}^{f_{ak}} Sr(f)df}$$
 (10)

$$r_k = 2^k - R \tag{11}$$

Sendo:

- k o número de harmônicos em análise;
- R corresponde a uma frequência do harmônico escolhido que tenha frequência ressonante com a frequência da estrutura;
- Tr é o período relacionado ao harmônico ressonante;
- rk é a razão entre o período de harmônico k e o período do harmônico ressonante.
- θ_k é o ângulo de fase do harmônico k correspondente.

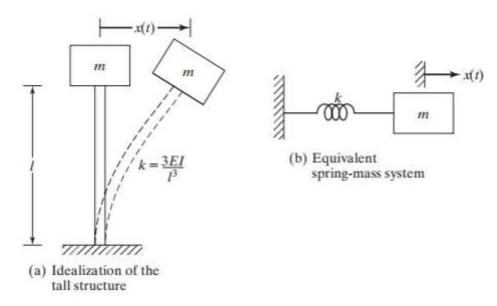
Vale ressaltar que os ângulos de fase devem estar contidos em um intervalo angular de $0 \le \theta_k \le 2\pi$, sendo estes considerados pseudoaleatórios, por ser um valor característico correspondente a uma resposta de 20 séries temporais de carregamento.

Franco (1993) determinou que os termos f_{pk} e f_{ak} são os intervalos de integração do fator C_k , são obtidos através de relações entre as frequências naturais, período e número do harmônico, seguindo as expressões abaixo:

$$f_{ak} = \frac{r}{2^{(k-0.5-R)}} \tag{12}$$

$$f_{pk} = \frac{r}{2^{(k+0.5-R)}} \tag{13}$$

Onde:


- k é o número de harmônicos;
- r é a frequência fundamental da estrutura.

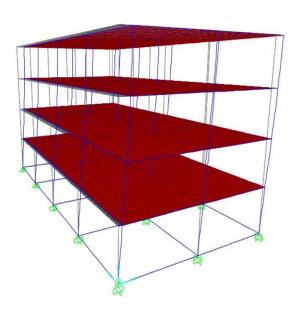
A frequência fundamental da estrutura corresponde a frequência própria da mesma. Indica a frequência à qual a edificação pode entrar em ressonância com excitações externas. Segundo Almeida (2005):

"Quando a frequência natural de uma estrutura for igual (ou quase) à frequência de sua fonte de excitação, diz-se que ela se encontra na (ou próxima da) ressonância. Nesta situação, as deflexões da estrutura crescem significativamente e o movimento torna-se perceptível, muitas vezes incômodo."

Para um sistema de um grau de liberdade (1 GDL), como por exemplo um sistema massa mola sem amortecimento, conforme a figura 12, pode-se estimar a sua frequência natural a partir da seguinte expressão:

Figura 12- Sistema com 1 GDL

Fonte: Rao (2011)


$$f = \frac{1}{2\pi} \cdot \sqrt{\frac{K}{M}} \tag{14}$$

Sendo f a frequência natural do sistema, K a rigidez do sistema (expressa em N/m), e a massa do sistema (expressa em kg). Nota-se que a frequência é inversamente proporcional à massa e diretamente proporcional à rigidez. A rigidez, em termos gerais, corresponde a influência do comprimento do vão do elemento, o seu módulo de elasticidade (característica física do material), a inércia do corpo (característica geométrica do corpo em análise) e as condições de vinculações adotadas no modelo, como pontua Almeida (2005).

Intuitivamente percebe-se que quanto maior o grau de flexibilidade da estrutura, menor será sua frequência natural. Ressalta-se que, para o estudo em questão, a frequência fundamental é garantida pela análise do software de elementos finitos, que a partir da distribuição da massa do edifício, com um número de coordenadas generalizadas adotadas, consegue facilmente determinar o período e a frequência do modo de vibração natural da edificação verificada, conforme ilustra a figura 13:

Figura 13: Frequência natural obtido pelo SAP 2000

Deformed Shape (MODAL) - Mode 1; T = 0,61646; f = 1,62215

Fonte: Elaborado pelo Autor

Contido os dados acerca da frequência fundamental, é possível calcular o período e frequência para cada harmônico iterativamente, através das expressões:

$$T_k = \frac{1}{f_k} \tag{15}$$

$$f_k = 2^{(k-R)} (16)$$

Sendo:

- f_k a frequência da edificação para o harmônico k;
- T_k é o período da edificação para o harmônico k.

2.2.3 Correlação das velocidades.

Lazanha (2003) descreve que a correlação das velocidades pode ser discretizada como função da distância de duas variáveis: o deslocamento de um ponto da estrutura d e a frequência da rajada f correspondente.

Segundo Cunha (2012), a correlação das velocidades pode ser expressa a partir da definição de tamanho da rajada, já que a mesma corresponde a uma rajada perfeitamente correlacionada:

$$coh(d, f) = e^{\hat{f}} \tag{17}$$

$$\hat{f} = \frac{f \cdot \sqrt{C_z^2 \cdot (z_1 - z_2)^2 + C_y^2 \cdot (y_1 - y_2)^2}}{\bar{V}_{10}}$$
(18)

Sendo:

- coh(d, f) é a função de correção das velocidades;
- \hat{f} é a frequência que envolve a frequência de rajada;
- z₁, z₂, y₁, y₂ são as coordenadas dos nós da fachada do edifício,
 perpendicular a rajada de vento;
- C_z e C_y são fatores de decaimento exponencial, obtidos através de dados e correlações experimentais.

Segundo Carril Jr (2000), a correlação de banda estreita do método do vento sintético pressupõe um fator de decaimento exponencial de $\mathcal{C}=7$, logo o comprimento de rajada pode ser determinado para cada harmônico segundo a expressão:

$$\Delta z_k = \frac{V_p}{C.f_k} \tag{19}$$

$$\Delta z_k = \frac{V_p}{7.f_k} \tag{20}$$

2.2.4 Centro de Rajada

A partir do comprimento das rajadas, para cada harmônico, deve-se obter o centro de rajada para cada situação de carregamento. Ressalta-se que o centro de rajada é o ponto na estrutura onde obtém-se as maiores respostas devidas ao vento, por isso a importância de o processo de obtenção do mesmo ser dado de maneira iterativa, ao longo da edificação.

A localização do centro de rajada pode ser determinada através das rajadas equivalentes, explicitas na figura 14 (Franco, 1993):

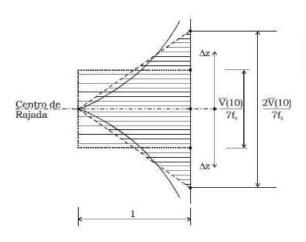


Figura 14 - Rajadas equivalentes.

Fonte: Franco, 1993

Com o comprimento de rajada Δz_k e as séries temporais de carga de vento, Franco (1993) determina que a estrutura deve ser excitada por 20 séries de carregamento, sendo no mínimo 220 funções harmônicas (tendo em vista que o número mínimo de harmônicos do método é de m=11).

Um método para a criação destes carregamentos foi apresentado por Santos (2018), onde houve uma distribuição randômica de 20 séries de ângulos de fase aleatórios para o conjunto de harmônicos analisados.

Carril Jr (2000) complementa a figura 14, quando afirma que para cada frequência do vento adota-se uma correlação espacial, representada por dois triângulos com decaimento de 1 a 0, atuando na altura total de:

$$2. \Delta z_k = 2. \frac{V_p}{7. f_k} \tag{21}$$

Finalmente, a determinação do centro de rajada dar-se-á por:

$$G_c = z_1 - \Delta z_k \tag{22}$$

Sendo:

- z₁ é a altura total do edifício;
- Δz_k é o comprimento de rajada de cada harmônico k correspondente.

2.2.5 Parcela média e Parcela flutuante

Franco (1993) definiu uma relação através da preposição de que a relação entre a pressão média, de intervalo de tempo 600 segundos, e a pressão máxima do vento, de intervalo correspondente a uma rajada de 3 segundos, ocorre da seguinte maneira:

$$\frac{q_{600}}{q_3} = \left(\frac{V_{600}}{V_3}\right)^2 = 0.69^2 = 0.48 \tag{23}$$

Sendo:

- q₆₀₀ a pressão média do vento no intervalo de 600 segundos;
- q_3 é a pressão máxima de rajada no intervalo de 3 segundos;
- V_{600} é a velocidade média do vento no intervalo de 600 segundos;
- V₃ é a velocidade de rajada no intervalo de 3 segundos.

Logo, 48% da força global atuante na estrutura devido as solicitações de vento correspondem a parcela da pressão média e 52% representa o valor flutuante que são fornecidos pelas rajadas de vento.

2.2.6 Harmônicos de Forças

Os harmônicos de forças são as parcelas de carga flutuantes atuantes em cada nó, sendo multiplicada pela área de influência deste para obtenção o esforço nodal para *j* nós da estrutura.

A parcela flutuante do vento, pode ser dada também com a seguinte expressão:

$$p'_{k} = \frac{C_{k}}{\sum_{k=1}^{m} C_{k}} \cdot p' = c_{k} \cdot p'$$
 (24)

$$c_k = \frac{C_k}{\sum_{k=1}^{m} C_k}$$
 (25)

Após o cálculo da parcela flutuante, deve-se encontrar a pressão flutuante q_f :

$$q_f = 0.613. V_{pico}^2 - 0.613. V_{m\'edia}^2$$
 (26)

Sendo:

$$V_{pico} = 0.94. V_o. \left(\frac{z}{10}\right)^{0.185} \tag{27}$$

$$V_{m\acute{e}dia} = 0,5934. V_o. \left(\frac{z}{10}\right)^{0,185}$$
 (28)

A pressão dinâmica do carregamento estático é expressa da mesma maneira que o equivalente da norma NBR 6123 (ABNT, 1988), utilizando para o cálculo daquele a velocidade média no tempo de 600 segundos, logo:

$$q_{est} = 0.613. (V_{m\acute{e}dia})^2 (29)$$

A força de arrasto estática é expressa por:

$$F_{est} = C_a. q_{est}. A_j (30)$$

Sendo:

• A_i é a área de influência do nó discreto.

Determina-se a pressão flutuante no espectro de potência, que leva em consideração a pressão flutuante corrigida, a pressão dinâmica flutuante e um fator de correção do fator de rajada, chamado no método de C_r :

$$Q = q_f. Cr. p_k' \tag{31}$$

Para a determinação das forças dinâmicas do método, basta encontrar a resultante das forças flutuantes com as variáveis já descritas acima, e efetuar o seu posterior somatório:

$$F_f = C_a.A_j.Q (32)$$

$$P_{din} = \sum_{k=1}^{m} F_f \tag{33}$$

2.3 Gama Z

Na análise estrutural, a avaliação da estabilidade global está entre um dos itens mais importantes para garantir a qualidade e segurança do edifício, de forma que

deve ser assegurado que a estrutura como um todo, ou qualquer parte isolada dela, nunca atinjam o estado limite ultimo de instabilidade. Estado este que leva à perda da capacidade resistente da estrutura causada pelo aumento das deformações.

Como formas de avaliar este parâmetro levam-se em consideração os efeitos de 1ª e 2ª ordem que ocorrem nas estruturas, sendo os de 1ª ordem aqueles que ocorrem na estrutura em sua geometria inicial, sem deformação, e os de 2ª ordem aqueles esforços adicionais que são gerados a partir das deformações ocorridas.

No item 15.4 da ABNT NBR 6118:2014, permite-se desprezar os efeitos globais de segunda ordem caso seja constatado que sua magnitude não represente um acréscimo maior que 10% dos efeitos de primeira ordem.

O coeficiente γ_z é um dos parâmetros indicados pela ABNT NBR 6118:2014 utilizados para estimar a grandeza dos efeitos de 2^a ordem na estabilidade global da estrutura com no mínimo quatro andares. De acordo com Kimura (2007) os valores coerentes para este coeficiente são aqueles um pouco maiores que 1, como por exemplo, de 1,1 a 1,25. Valores superiores a 1,3 já representam uma instabilidade elevada e superiores a 1,5 revelam que a estrutura é instável e impraticável. Valores menores que 1 também não são satisfatórios, servido também como indicadores de instabilidade estrutural.

Para o cálculo de γ_z , de acordo com o item 15.5.3 da NBR 6118:2014, para cada combinação de carregamento temos que:

$$\gamma_z = \frac{1}{1 - \frac{\Delta M_{tot,d}}{M_{1,tot,d}}} \tag{34}$$

Onde.

- ΔM_{tot,d}: é a soma dos produtos de todas as forças verticais atuantes na estrutura, com seus valores de cálculo, pelos deslocamentos horizontais de seus respectivos pontos de aplicação, obtidos em primeira ordem.
- M_{1,tot,d}: é o momento de tombamento, ou seja, a soma dos momentos de todas as forças horizontais, com seus valores de cálculo, em relação à base da estrutura.

3 METODOLOGIA

3.1 Caracterização do Modelo

Foram considerados para comparação das metodologias de obtenção de esforços devidos ao vento alguns modelos tridimensionais de edificações, sendo estes prédios de 4, 8 e 12 pavimento, com formato retangular de 10x20m, com pé direito constante de 3 metros e distância entre pórticos de 5 metros.

Para a determinação das cargas, utilizou-se as preconizações normativas da ABNT NBR 6120/1980, "Cargas para cálculo de edificações". Para os pavimentos tipos, foi considerado uma carga de uso com valor de $2 \, kN/m^2$, $1 \, kN/m^2$ para a cobertura, e um carregamento linear nas vigas de bordo, representando a carga de alvenaria, com valor de $4,875 \, kN/m$.

O material utilizado nos elementos estruturais (vigas, pilares e lajes) foi o concreto, com resistência característica a compressão de 35Mpa. O módulo de elasticidade utilizado foi o secante, com valor pré-determinado pela tabela 8.1 da ABNT NBR 6118:2014:

Tabela 06: Módulo secante estimado em função da resistência.

Classe de resistência	C20	C25	C30	C35	C40	C45	C50	C60	C70	C80	C90
E _{ci} (GPa)	25	28	31	33	35	38	40	42	43	45	47
E _{cs} (GPa)	21	24	27	29	32	34	37	40	42	45	47
α_i	0,85	0,86	0,88	0,89	0,90	0,91	0,93	0,95	0,98	1,00	1,00

Fonte: ABNT, 2014

Cada prédio utilizou-se de 3 modelos para comparação dos esforços por conta do carregamento do vento. A tabela 07 mostra a nomenclatura para seu respectivo caso:

Nome	Descrição
MOD04 – V.N	Modelo de 4 Pavimento com o Vento da Norma
MOD04 - V.S.E	Modelo de 4 Pavimentos com o Vento Sintético Estático
MOD04 - V.S.D	Modelo da 4 Pavimentos com o Vento Sintético Dinâmico
MOD08 – V.N	Modelo de 8 Pavimentos com o Vento da Norma
MOD08 - V.S.E	Modelo de 8 Pavimentos com o Vento Sintético Estático
MOD08- V.S.D	Modelo de 8 Pavimentos com o Vento Sintético Dinâmico
MOD12 – V.N	Modelo de 12 Pavimentos com o Vento da Norma
MOD12- V.S.E	Modelo de 12 Pavimentos com o Vento Sintético Estático
MOD12 - V.S.D	Modelo de 12 Pavimentos com o Vento Sintético Dinâmico

Tabela 07: Modelos analisados.

Os modelos com o nome "MOD04" se referem ao edifício de 4 pavimentos, com 12 metros de altura, e assim sucessivamente para os outros pavimentos. A nomenclatura secundária representa o caso de carregamento da ação do vento naquela estrutura, sendo:

- V.N: A estrutura é carregada com o vento da NBR 6123;
- V.S.E: A estrutura é carregada com somente a parcela estática do método do vento sintético;
- V.S.D: A estrutura é carregada com a parcela dinâmica do método do vento sintético (parcela flutuante + parcela estática).

3.1.1 Combinações de ações

As combinações de ações utilizadas no modelo foram determinadas a partir de Munaiar (2015), com as recomendações preconizada pela ABNT NBR 8681:2003, "Ações e segurança nas estruturas – Procedimento".

Para tal, define-se que para todos os edifícios deste trabalho, utiliza-se a chamada Combinação última normal, que tem por formulação geral:

$$F_d = \sum_{i=1}^m \gamma_{gi} \cdot F_{Gi,k} + \gamma_q \cdot \left[F_{Q1,k} + \sum_{j=2}^m \psi_{0j} \cdot F_{Qi,k} \right]$$
 (35)

Sendo:

• $F_{Gi,k}$ representa o valor característico das ações permanentes;

- F_{Q1,k} representa o valor característico da ação variável considerada como ação principal para a combinação;
- ψ_{0j} . $F_{Qi,k}$ representa o valor reduzido de combinação de cada uma das demais ações variáveis.

Adotaram-se quatro tipos de combinação nos modelos deste trabalho, sendo duas considerando a sobrecarga como variável principal, e duas considerando a ação do vento como variável principal, cada uma com uma direção de aplicação do vento (vento a 0° e vento a 90°).

A seguir é mostrada a tabela da ABNT NBR 8681:2003, com os valores a serem adotados para os coeficientes ponderadores nas combinações, assim como a tabelas com os fatores de combinação. Na tabela 08 é ilustrada as combinações adotadas nos modelos no SAP 2000 para análise:

Tabela 08: Ações permanentes diretas agrupadas.

Combinacia	+	Efeito		
Combinação	Tipo de estrutura	Desfavorável	Favorável	
	Grandes pontes ¹⁾	1,30	1,0	
Normal	Edificações tipo 1 e pontes em geral ²⁾	1,35	1,0	
	Edificação tipo 23)	1,40	1,0	
2 22 2	Grandes pontes ¹⁾	1,20	1,0	
Especial ou de construção	Edificações tipo 1 e pontes em geral ²⁾	1,25	1,0	
construção	Edificação tipo 23)	1,30	1,0	
	Grandes pontes ¹⁾	1,10	1,0	
Excepcional	Edificações tipo 1 e pontes em geral ²⁾	1,15	1,0	
	Edificação tipo 23)	1,20	1,0	

¹⁾ Grandes pontes são aquelas em que o peso próprio da estrutura supera 75% da totalidade das ações.

Fonte: ABNT NBR 8681:2003.

²⁾ Edificações tipo 1 são aquelas onde as cargas acidentais superam 5 kN/m².

³⁾ Edificações tipo 2 são aquelas onde as cargas acidentais não superam 5 kN/m².

Tabela 09: Ações variáveis consideradas conjuntamente

Combinação	Tipo de estrutura	Coeficiente de ponderação
Normal	Pontes e edificações tipo 1 Edificações tipo 2	1,5 1,4
Especial ou de construção	Pontes e edificações tipo 1 Edificações tipo 2	1,3 1,2
Excepcional	Estruturas em geral	1,0

Fonte: ABNT NBR 8681:2003

Tabela 10: Fatores de combinação e de redução para ações variáveis

Ações	Ψ0	Ψ1	ψ2 3), 4)
Cargas acidentais de edifícios			
Locais em que não há predominância de pesos e de equipamentos que permanecem fixos por longos períodos de tempo, nem de elevadas concentrações de pessoas ¹⁾	0,5	0,4	0,3
Locais em que há predominância de pesos de equipamentos que permanecem fixos por longos períodos de tempo, ou de elevadas concentrações de pessoas ²⁾	0,7	0,6	0,4
Bibliotecas, arquivos, depósitos, oficinas e garagens	0,8	0,7	0,6
Vento	0.0	00	•
Pressão dinâmica do vento nas estruturas em geral	0,6	0,3	U

Fonte: ABNT NBR 8681:2003

Tabela 11: Combinações última normais

Nome	Descrição
SC_X+	$1,4.(Pp + A) + 1,4.[Sc + 0,6.VT_X]$
SC_Y+	$1,4.(Pp + A) + 1,4.[Sc + 0,6.VT_Y]$
VT_X+	$1,4.(Pp + A) + 1,4.[VT_X + 0,7.Sc]$
VT_Y+	$1,4.(Pp + A) + 1,4.[VT_Y + 0,7.Sc]$

Fonte: Elaborado pelo Autor

Sendo:

- Pp é a carga correspondente ao peso próprio da estrutura (gerada pelo próprio software, a partir dos dados de entrada físicos e geométricos do modelo);
- A é a carga correspondente a alvenaria do prédio;
- Sc é a carga correspondente a sobrecarga de uso do prédio;

- VT_X é a carga de vento 90° considerada no modelo em questão;
- VT_Y é a carga de vento 0° considerada no modelo em questão.

3.1.2 Aplicação das cargas de vento

Os carregamentos de vento, em todas as situações, foram gerados com o auxílio do software matemático Mathcad Com este, é possível definir a força nodal de cada ponto da estrutura para a rajada de vento analisado. Algumas generalizações foram adotadas para todos os modelos, buscando a facilitação e padronização na entrada de dados de força, sendo aquelas:

 Os planos foram padronizados para a atuação do vento. Plano YZ, em y=0 para vento 0° e plano ZX, em x=0 para vento 90°.

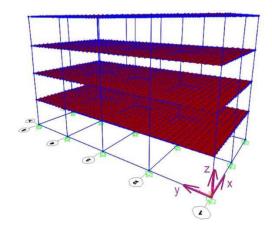


Figura 15: Eixos padrões do modelo

Fonte: Elaborado pelo Autor

Os nós da estrutura foram numerados de acordo com os planos XZ e YZ.
 Esta numeração é de fundamental importância para a distribuição dos esforços nodais dos diversos carregamentos de vento em estudo. As figuras 16 e 17 mostram a distribuição nominal dos nós do edifício:

1 2 3 4 5 6 7 8 9

11

10

12

Figura 16: Numeração nodal do eixo XZ

Fonte: Elaborado pelo Autor

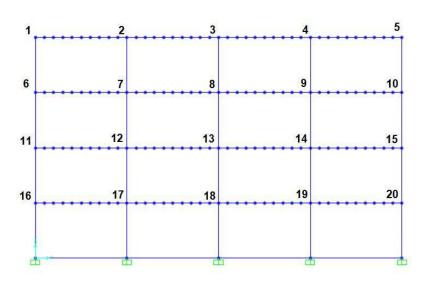


Figura 17: Numeração Nodal do eixo YZ

Fonte: Elaborado pelo Autor.

Cabe ressaltar que os nós seguem uma proporcionalidade de acordo com o aumento da quantidade de andares (por exemplo, no eixo YZ dos prédios de 8 e 12

andares possuem, respectivamente, 40 e 60 nós). As figuras 18 a 20 mostram a planta de forma usada para cada modelo:

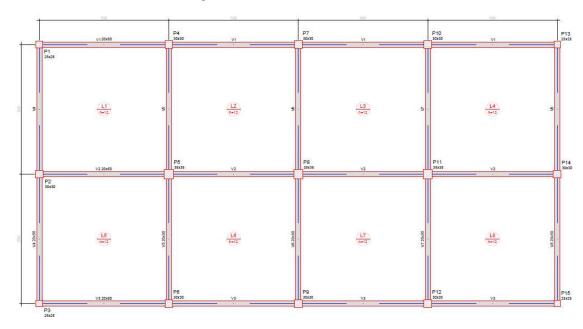


Figura 18: Planta de Forma MOD04

Fonte: Elaborado pelo Autor

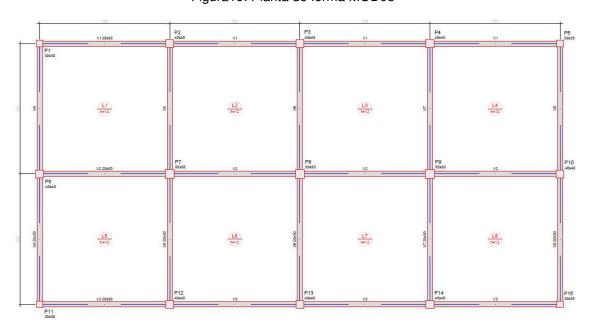


Figura 19: Planta de forma MOD08

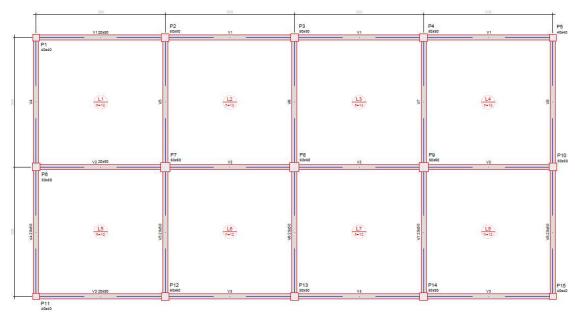


Figura 20: Planta de forma do MOD12

 A área para a distribuição da força de arrasto, chamada de área de influência, é determinada através de uma distribuição uniforme de áreas, sendo basicamente definida pela expressão:

$$A_i = \frac{a}{2} \cdot \frac{b}{2} \tag{36}$$

Sendo:

 a e b são as distâncias consecutivas do nó ao eixo do nó adjacente, conforme indicado na figura 21:

a/2 a/2 b/2 b/2

Figura 21: Áreas de influência nodais

Os valores das áreas de influência utilizados no cálculo dos esforços nodais estão no anexo deste documento.

3.1.3 Força do Vento segundo a NBR 6123:1988

A aplicação do método estático da NBR 6123:1988, foi utilizado uma função da força de arrasto, baseado no cálculo da mesma apresentado na seção 2.1 deste trabalho. A função foi definida no software Mathcad, e o seu cálculo completo está apresentada nos anexos deste documento. Logo, a força de arrasto em função da altura é de:


Figura 22: Função da força de arrasto pela altura.

$$F_{a.1}\!\left(z\right)\!\coloneqq\!C_{a.0}\!\cdot\!\left(0.613\cdot\!\left(\!V_o\!\cdot\!S_1\!\cdot\!b\cdot\!F_r\!\cdot\!\left(\!\frac{z}{10}\right)^p\cdot\!S_3\!\right)^2\right)\!\cdot\!A_{1.0}$$

Fonte: Elaborado pelo Autor.

Nas figuras 23 e 24, explicita-se a distribuição das forças nodais através da altura:

Figura 23: Distribuição das forças segundo a NBR 6123 na direção X+

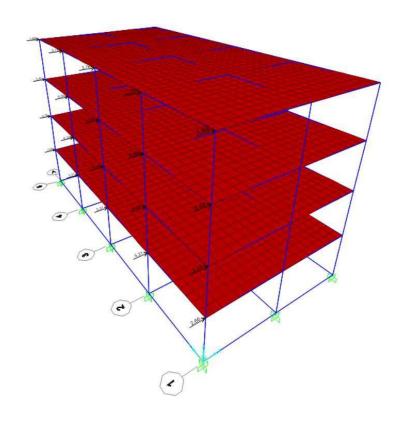


Figura 24: Distribuição das forças segundo a NBR 6123 na direção Y+

3.1.4 Força do Vento segundo o Método do Vento Sintético (Franco,1993)

Para a obtenção das componentes de forças do método do vento sintético, tanto a parcela estática quanto a parcela dinâmica, foi utilizado uma rotina em Mathcad um pouco diferente da referente ao método estático da NBR 6123:1988.

Usou-se uma programação vetorial, desde a quantidade de nós até o número de harmônicos, pelo fato das diversas iterações que o próprio método impõe. O processo vetorial foi escolhido pela facilidade de programação e baixo custo de programação requerido para a função, tendo em vista uma gama alta de elementos analisados e cálculos matemáticos que exigem um processamento maior (somatórios, integrações, entre outros). Todo o procedimento adotado encontra-se em anexo deste documento.

Para a frequência de rajadas, no início do processo de cálculo do método, utiliza-se os valores de 0,0017 a 2,5. O período correspondente a estas frequências é de, respectivamente, 600 segundos e 0,4 segundos, o que indica a abrangência do

espectro de potência para rajadas instantâneas ($t \approx 0s$) até as rajadas médias (t = 600s).

A frequência natural é requerida nos cálculos. Por este motivo, as frequências naturais, correspondentes ao modo de vibração 1 são extraídas a partir da análise em elementos finitos feito pelo próprio software SAP 2000 para cada prédio, com suas características de altura. As figuras 25 a 28 explicitam os valores das frequências naturais dos 3 prédios analisados, em Hertz:

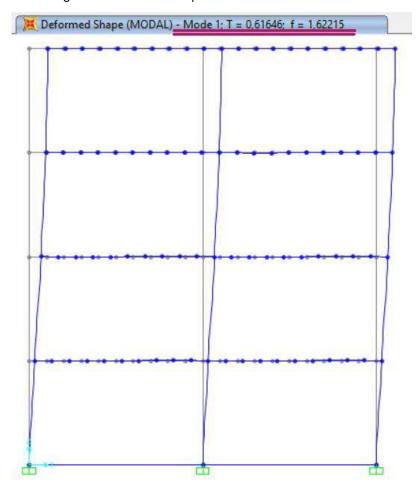


Figura 25: Modo de frequência fundamental - MOD04

Figura 26: Modo de frequência fundamental – MOD08

Deformed Shape (MODAL) - Mode 1; T = 0,95563; f = 1,04643

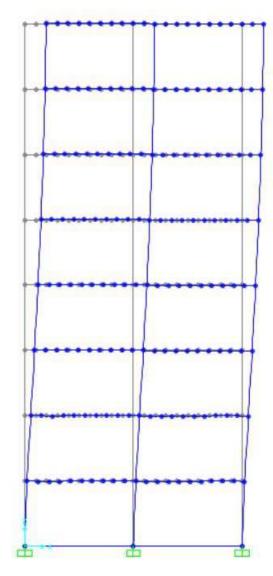
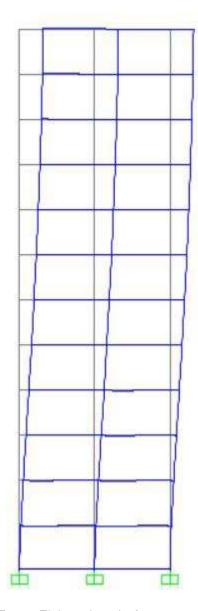



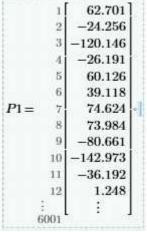
Figura 27: Modo de frequência fundamental – MOD12

Deformed Shape (MODAL) - Mode 1; T = 1,34345; f = 0,74435

Fonte: Elaborado pelo Autor

Dentro da rotina, há um artifício para abranger o intervalo instantâneo ($t \cong 0$) até o valor médio (t = 600s). Na parcela dinâmica final, é necessário a segmentação dos intervalos de tempo, em reposta a cada nó da estrutura. Logo, a força dinâmica Pdin é uma função de duas variáveis:

$$Pdin = Pdin(t, j) (37)$$


A parcela de cada nó é determinada pelos intervalos de tempo analisados no cálculo. Por exemplo, para o nó 1, a força dinâmica é determinada por:

$$P1 = Pdin\left(\frac{l-1}{10}, 1\right) \tag{38}$$

Sendo l um vetor coluna abrangendo os intervalos de 1,0.1 ... 6001. Ou seja, quando l=1, o tempo da função é zero, e l=6001, o tempo da função é 600s, representando a parcela instantânea até a parcela média, com intervalos de décimos de segundos.

Por conta de o intervalo ser muito pequeno, cada parcela de força dinâmica possui 6000 componentes dentro de seu vetor:

Figura 28: Quantidade de componentes de um vetor de força dinâmica

Fonte: Elaborado pelo Autor

A determinação da parcela total da força do vento sintético foi encontrada a partir da maximização de todos os vetores, nos *j* nós da estrutura, com sua respectiva soma com a parcela estática do próprio método, sendo generalizada por:

$$P_j = maz(Pdin_j) + Fest_j (39)$$

Sendo:

- P_i é a parcela total de força nodal, no nó de índice j;
- Pdin_i é o vetor de forças nodais, no nó de índice j;
- Fest_i é a parcela de força nodal estática, no nó de índice j.

4 Análise dos Resultados

Dentre a gama de resultados obtidos neste trabalho para os modelos, os de maior importância técnica para a análise serão descritos no tópico a seguir. Foram mensuradas as diferenças em relação a força do vento ao longo da edificação, estabilidade global, deslocamentos horizontais e variação do esforço axial e momentos fletores nos pilares.

4.1 - Força do Vento

A força do vento ao longo da estrutura foi comparada da seguinte maneira:

- I Calculou-se as forças do vento pelo método discreto da NBR 6123:1988,
 pelo método do vento sintético e sua parcela estática e pelo método do vento sintético e sua parcela dinâmica;
- II A força nodal foi distribuída de acordo com cada área de influência, nos dois pórticos principais do edifício;
- III O perfil de forças foi considerado no pórtico central do plano XZ, com os valores calculados para a combinação de vento mais desfavorável (VT Y+).
- IV Para a facilitação da leitura, criou-se a seguinte legenda: V.N (Solicitações devido as ações da norma); V.S.E (Solicitações devido as ações da parcela estática do método do vento sintético); V.S.D (Solicitações devido as ações da parcela dinâmica do método do vento sintético).
- V Houve a avaliação dos valores das forças, montagem dos gráficos do perfil das mesmas, e a tabulação da diferença percentual das mesmas, sempre comparada com o modelo de força de vento da ABNT NBR 6123:1988.

A seguir, exibe-se os resultados examinados para as forças do vento:

The static of th

Figura 29: Perfil de forças do vento ao longo da estrutura: MOD04- Plano YZ

Tabela 12: Forças do vento no Eixo YZ, em kN

Força do Vento - MOD04 - Eixo YZ				
Altura z	V.N	V.S.E	V.S.D	
12	3,755	1,87	2,057	
9	6,988	3,363	3,598	
6	6,315	2,895	3,36	
3	5,31	2,24	2,98	
0	0	0	0	

Fonte: Elaborada pelo Autor

Tabela 13: Diferença percentual no módulo da força no Eixo YZ

Força do Vento - YZ (%)				
Altura z	V.S.E	V.S.D		
12	-88,50%	-69,80%		
9	-262,50%	-239,00%		
6	-242,00%	-195,50%		
3	-207,00%	-133,00%		
0	0,00%	0,00%		

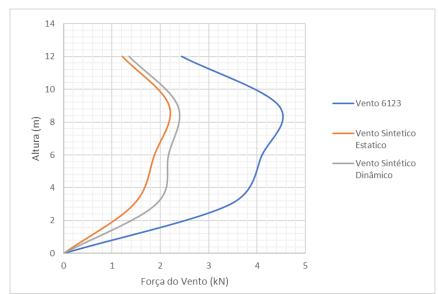


Figura 30: Perfil de forças do vento ao longo da estrutura: MOD04 - PLANO XZ

Tabela 14: Forças do vento no Eixo XZ, em kN

Força do '	Força do Vento - MOD04 - Eixo XZ				
Altura z	V.6123	V.S.E	V.S.D		
12	2,441	1,216	1,352		
9	4,452	2,186	2,357		
6	4,105	1,881	2,166		
3	3,451	1,456	1,909		
0	0	0	0		

Fonte: Elaborada pelo Autor

Tabela 15: Diferença Percentual no módulo da força, no Eixo XZ

Força do Vento - XZ (%)				
Altura z	V.S.E	V.S.D		
12	-100,74%	-80,55%		
9	-103,66%	-88,88%		
6	-118,23%	-89,52%		
3	-137,02%	-80,78%		
0	0,00%	0,00%		

Fonte: Elaborada pelo Autor

A priori, percebe-se que houve uma grande diferença nos valores resultantes entre o método estático normativo e os dois valores analisados para o método do vento sintético, tanto pelos valores das diferenças percentuais, quanto pelo gráfico correspondente ao perfil das forças nodais.

30
25
20
E
S
15
10
0
0
2
4
6
8
10
12
Força do Vento (kN)

Figura 31: Perfil de forças do vento ao longo da estrutura: MOD08 – Plano YZ

Tabela 16: Forças do vento no Eixo YZ, em kN

Força do	Força do Vento - MOD08 - Eixo YZ				
Altura z	V.N	V.S.E	V.S.D		
24	4,837	2,619	2,88		
21	9,357	4,985	5,085		
18	9,003	4,709	5,212		
15	8,602	4,401	5,063		
12	8,135	4,053	5,018		
9	7,571	3,643	4,354		
6	6,841	3,136	3,988		
3	5,752	2,426	3,372		
0	0	0	0		

Fonte: Elaborada pelo Autor

Tabela 17: Diferença percentual no módulo da força, no Eixo YZ

Força do Vento - YZ (%)				
Altura z	V.S.E	V.S.D		
24	-84,69%	-67,95%		
21	-87,70%	-84,01%		
18	-91,19%	-72,74%		
15	-95,46%	-69,90%		
12	-100,72%	-62,12%		
9	-107,82%	-73,89%		
6	-118,14%	-71,54%		
3	-137,10%	-70,58%		
0	0	0		

30
25
20
(E) Exp 15
10
5
0
Força do Vento (kN)

Vento 6123

Vento Sintetico Estatico

Figura 32: Perfil de forças do vento ao longo da estrutura: MOD08 - Plano XZ

Tabela 18: Forças do vento no eixo XZ, em kN

Força do Vento - MOD08 - Eixo XZ				
Altura z	V.N	V.S.E	V.S.D	
24	3,907	2,115	2,311	
21	7,557	4,026	4,112	
18	7,272	3,803	4,253	
15	6,948	3,555	4,033	
12	6,571	3,273	3,972	
9	6,115	2,943	3,41	
6	5,525	2,533	3,093	
3	4,646	1,96	2,581	
0	0	0	0	

Fonte: Elaborada pelo Autor

Tabela 19: Diferença percentual no módulo da força, em kN

Força do Vento - XZ (%)			
Altura z	V.S.E	V.S.D	
24	-84,73%	-69,06%	
21	-87,70%	-83,78%	
18	-91,22%	-70,99%	
15	-95,44%	-72,28%	
12	-100,76%	-65,43%	
9	-107,78%	-79,33%	
6	-118,12%	-78,63%	
3	-137,04%	-80,01%	
0	0	0	

40 35 30 Vento 6123 25 Altrura (m) 25 Vento Sintetico Estatico -Vento Sintético 15 Dinâmico 10 5 0 0 10 12 Força do Vento (kN)

Figura 33: Perfil de forças do vento ao longo da estrutura: MOD12 - Plano YZ

Tabela 20: Forças do vento no eixo YZ, em kN

Força do '	Força do Vento - MOD12 - Eixo YZ			
Altura z	V.N	V.S.E	V.S.D	
36	5,559	3,16	3,446	
33	10,88	6,119	6,625	
30	10,62	5,907	6,197	
27	10,35	5,681	6,424	
24	10,05	5,439	6,085	
21	9,717	5,177	6,057	
18	9,349	4,89	5,999	
15	8,933	4,571	5,244	
12	8,448	4,208	4,987	
9	7,862	3,783	4,657	
6	7,104	3,256	4,205	
3	5,974	2,52	3,5	
0	0	0	0	

Tabela 21: Diferença percentual no módulo da força, em kN

Força do Vento - Eixo YZ				
	(%)			
Altura z	V.S.E	V.S.D		
36	75,92%	61,32%		
33	77,81%	64,23%		
30	79,79%	71,37%		
27	82,19%	61,11%		
24	84,78%	65,16%		
21	87,70%	60,43%		
18	91,19%	55,84%		
15	95,43%	70,35%		
12	100,76%	69,40%		
9	107,82%	68,82%		
6	118,18%	68,94%		
3	137,06%	70,69%		
0	0	0		

Figura 34: Perfil de forças do vento ao longo da estrutura: MOD12 - Plano XZ

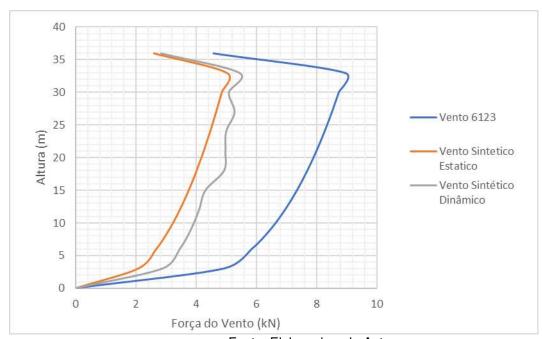


Tabela 22: Forças do vento no Eixo XZ, em kN

Força do '	Força do Vento - MOD12 - Eixo XZ				
Altura z	V.N	V.S.E	V.S.D		
36	4,571	2,598	2,833		
33	8,945	5,031	5,448		
30	8,734	4,857	5,095		
27	8,507	4,671	5,282		
24	8,261	4,472	5,003		
21	7,989	4,256	4,98		
18	7,687	4,02	4,932		
15	7,345	3,758	4,312		
12	6,946	3,46	4,1		
9	6,464	3,111	3,829		
6	5,841	2,677	3,458		
3	4,912	2,072	2,878		
0	0	0	0		

Tabela 23 - Diferença percentual no módulo da força, em kN

Força do Vento - Eixo XZ (%)			
Altura z	V.S.E	V.S.D	
36	-75,94%	-61,35%	
33	-77,80%	-64,19%	
30	-79,82%	-71,42%	
27	-82,12%	-61,06%	
24	-84,73%	-65,12%	
21	-87,71%	-60,42%	
18	-91,22%	-55,86%	
15	-95,45%	-70,34%	
12	-100,75%	-69,41%	
9	-107,78%	-68,82%	
6	-118,19%	-68,91%	
3	-137,07%	-70,67%	
0	0	0	

Fonte: Elaborada pelo Autor

Analisando os resultados percebe-se que o padrão de diferença continua, porém com a redução da mesma a medida em que a estrutura cresce verticalmente. Nota-se que esses valores tendem a convergência para os resultados apresentados

em Santos (2018), onde nos edifícios estudados por este os valores apresentaram uma faixa de variação menor para construções com maior porte vertical.

Observa-se também que a parcela dinâmica apresenta nítidas flutuações em sua distribuição. Isto se dá por conta do centro de rajada calculado no método do vento sintético e que as variações se dão por volta da altura onde o centro se encontra.

4.2 Estabilidade Global

Outro parâmetro utilizado na análise dos resultados foi o coeficiente de instabilidade γ_z . A partir deste, é possível detectar a sensibilidade dos modelos aos efeitos de segunda ordem, e conseguir mensurar o seu grau de importância na estrutura e como o comportamento do vento influenciou no seu valor.

O cálculo do γ_z encontra-se no anexo deste trabalho, tendo seus valores apresentados a seguir:

Tabela 24: Coeficientes γ_z para os modelos analisados.

GAMA Z				
Modelos	Comb.	V.N	V.S.E	V.S.D
4 PAV	SC_Y+	1,023	1,023	1,023
4 PA V	VT_Y+	1,021	1,013	1,013
ODAV	SC_Y+	1,048	1,047	1,048
8 PAV	VT_Y+	1,044	1,043	1,044
12 PAV	SC_Y+	1,086	1,087	1,086
12 PA V	VT_Y+	1,079	1,08	1,079

Fonte: Elaborada pelo Autor

Tabela 25: Comparação entre os coeficientes γ_z para o MOD04 SC_Y+

Gama Z - MOD04 SC_Y+			
Modelo	Vento Norma	Vento Sint. Estático	Vento Sint. Dinamico
Gama Z	1,023	1,023	1,023
Variação	-	0,000%	0,000%

Tabela 26: Comparação entre os coeficientes γ_z para o MOD08 SC_Y+

Gama Z - MOD08 SC_Y+			
Modelo	Vento Norma	Vento Sint. Estático	Vento Sint. Dinamico
Gama Z	1,048	1,047	1,048
Variação	-	0,096%	0,000%

Tabela 27: Comparação entre os coeficientes γ_z para o MOD12 SC_Y+

Gama Z - MOD12 SC_Y+			
Modelo	Vento Norma	Vento Sint. Estático	Vento Sint. Dinamico
Gama Z	1,086	1,087	1,086
Variação	-	-0,092%	0,000%

Fonte: Elaborada pelo Autor

Tabela 28: Comparação entre os coeficientes γ_z para o MOD04 VT_Y+

Gama Z - MOD04 VT_Y+				
Modelo	Vento Norma	Vento Sint. Estático	Vento Sint. Dinamico	
Gama Z	1,021	1,021	1,021	
Variação	-	0,000%	0,000%	

Fonte: Elaborada pelo Autor

Tabela 29: Comparação entre os coeficientes γ_z para o MOD08 VT_Y+

Gama Z - MOD08 VT_Y+				
Modelo	Vento Norma	Vento Sint. Estático	Vento Sint. Dinamico	
Gama Z	1,044	1,043	1,043	
Variação	-	0,096%	0,096%	

Fonte: Elaborada pelo Autor

Tabela 30: Comparação entre os coeficientes γ_z para o MOD12 VT_Y+

Gama Z - MOD12 VT_Y+					
Modelo	Vento Norma	Vento Sint. Estático	Vento Sint. Dinamico		
Gama Z	1,079	1,08	1,079		
Variação	-	-0,093%	0,000%		

O coeficiente γ_z para os modelos apresentaram diferenças insignificantes para os fins de análise pretendidos. As causas da ocorrência deste fenômeno podem ser explicadas com as seguintes justificativas:

- Ocorre redução do esforço da carga de vento com o caso analisado, ou seja, há uma diminuição de intensidade quando se compara a força devido ao vento da norma com os casos do método do vento sintético.
- Como a força é reduzida quando comparado os casos, o mesmo se aplica aos deslocamentos do prédio que são proporcionais a intensidade daquelas, sendo, portanto, minimizados.
- Conforme aumenta-se o gabarito vertical, a concepção estrutural foi mudada para atender os requisitos de resistência última. Logo, há uma compensação de rigidez global do edifício a cada modelo utilizado neste estudo. Portanto, há a compatibilização da rijeza dos modelos com a alteração nas dimensões das seções dos elementos estruturais utilizados em cada caso.

Ao final, o modelo com maior γ_z apresentou um valor de aproximadamente 1,086, valor que pode ser interpretado como que a influência total dos efeitos de segunda ordem na estrutura estudada corresponde em torno de 8,6% dos efeitos de primeira ordem, valor que segundo Kimura (2007) pode ser considerado como comum e coerente.

4.3 Deslocamentos:

Os resultados de deslocamento seguem em exata consonância com os apresentados para as forças globais causadas pelo vento e os tópicos levantados no item de estabilidade global. Ressalta-se que a medida daqueles advém do resultado obtido pelo SAP 2000 da configuração deformada do pórtico central do plano XZ, que pode ser visualizado na figura 16 do item 3.1.2. A seguir, os valores dos deslocamentos para os modelos analisados:

Deslocamentos - MODO4 - SC_Y+

14
12
10
8
6
4
2
0
0
0,5
1
1,5
2
2,5
Deslocamento em milímetros

Vento 6123

Vento Sintético Estático

Vento Sintético Dinâmico

Figura 35: Deslocamentos horizontais do MOD04 – SC_Y+

Tabela 31: Valores dos deslocamentos horizontais do MOD04 – SC_Y+ , em mm

MOD04 - SC_Y+				
Altura	V.N	V.S.E	V.S.D	
0	0	0	0	
3	0,754	0,325	0,405	
6	1,503	0,707	0,8	
9	1,992	0,945	1,059	
12	2,184	1,036	1,159	

Fonte: Elaborada pelo Autor

Tabela 32: Diferença percentual do MOD04 – SC_Y+

MOD04 - SC_Y+ (%)			
Altura	V.S.E	V.S.D	
0	0%	0%	
3	-132,00%	-86,17%	
6	-112,59%	-87,88%	
9	-110,79%	-88,10%	
12	-110,81%	-88,44%	

Deslocamentos - MOD04 - VT_Y+ 14 12 10 8 6 4 2 0 0,5 1,5 2,5 3 3,5 Deslocamento em milímetros Vento Sintético Estático
 Vento Sintético Dinâmico

Figura 36: Deslocamentos horizontais do MOD04 – VT_Y+

Tabela 33: Valores dos deslocamentos horizontais do MOD04 – VT_Y+ , em mm

MOD04 - VT_Y+				
Altura	V.N	V.S.E	V.S.D	
0	0	0	0	
3	1,255	0,585	0,673	
6	2,506	1,178	1,334	
9	3,319	1,574	1,764	
12	3,645	1,731	1,937	

Fonte: Elaborada pelo Autor

Tabela 34: Diferença percentual do MOD4 – VT_Y+

MOD04 - VT_Y+ (%)			
Altura	Altura V.S.E		
0	0%	0%	
3	-114,53%	-86,48%	
6	-112,73%	-87,86%	
9	-110,86%	-88,15%	
12	-110,57%	-88,18%	

Deslocamentos - MODO8 - SC_Y+

30
25
20
15
10
5
0
1 2 3 4 5 6 7 8
Deslocamento em milímetros

Vento 6123 — Vento Sintético Estático — Vento Sintético Dinâmico

Figura 37: Deslocamentos horizontais do MOD08 – SC_Y+

Tabela 35: Valores dos deslocamentos horizontais do MOD08 – SC_Y+

MOD08 - SC_Y+			
Altura	V.N	V.S.E	V.S.D
0	0	0	0
3	0,942	0,474	0,549
6	2,63	1,176	1,355
9	3,645	1,851	2,119
12	4,779	2,44	2,778
15	5,73	2,925	3,309
18	6,4	3,293	3,706
21	6,863	3,54	3,97
24	7,096	3,659	4,1

Fonte: Elaborada pelo Autor

Tabela 36: Diferença percentual do MOD08 – SC_Y+

MOD08 - SC_Y+ (%)			
Altura	V.S.E	V.S.D	
0	0%	0%	
3	-98,73%	-71,58%	
6	-123,64%	-94,10%	
9	-96,92%	-72,02%	
12	-95,86%	-72,03%	
15	-95,90%	-73,16%	
18	-94,35%	-72,69%	
21	-93,87%	-72,87%	
24	-93,93%	-73,07%	

Deslocamentos - MODO8 - VT_Y+

30
25
20
15
10
5
0
0
2
4
6
8
10
12
14
Deslocamento em milímetros

Vento 6123

Vento Sintético Estático

Vento Sintético Dinâmico

Figura 38: Deslocamentos horizontais do MOD08 – VT_Y+

Tabela 39: Valores dos deslocamentos horizontais do MOD08 – VT_Y+

MOD08 - VT_Y+				
Altura	V.N	V.S.E	V.S.D	
0	0	0	0	
3	1,567	0,787	0,913	
6	3,884	1,961	2,259	
9	6,074	3,085	3,532	
12	7,965	4,067	4,629	
15	9,505	4,874	5,515	
18	10,666	5,488	6,177	
21	11,436	5,899	6,615	
24	11,835	6,106	6,841	

Tabela 40: Diferença percentual do MOD08 VT_Y+

MOD08 - VT_Y+ (%)			
Altura	V.S.E	V.S.D	
0	0%	0%	
3	-99,11%	-71,63%	
6	-98,06%	-71,93%	
9	-96,89%	-71,97%	
12	-95,84%	-72,07%	
15	-95,01%	-72,35%	
18	-94,35%	-72,67%	
21	-93,86%	-72,88%	
24	-93,83%	-73,00%	

Figura 39 Deslocamentos horizontais do MOD12 – SC_Y+

Tabela 41: Valores dos deslocamentos horizontais do MOD12 – SC_Y+

MOD12 - SC_Y+				
Altura	V.N	V.S.E	V.S.D	
0	0	0	0	
3	1,056	0,568	0,642	
6	2,935	1,579	1,78	
9	4,938	2,668	2,997	
12	6,859	3,717	4,166	
15	8,633	4,685	5,248	
18	10,231	5,56	6,225	
21	11,637	6,333	7,082	
24	12,839	6,998	7,812	
27	13,827	7,547	8,412	
30	14,534	7,974	8,876	
33	15,148	8,285	9,215	
36	15,499	8,475	9,423	

Tabela 42: Diferença percentual do MOD12 – SC_Y+

MO	MOD12 - SC_Y+ (%)			
Altura	V.S.E	V.S.D		
0	0%	0%		
3	-64,49%	-64,49%		
6	-64,89%	-64,89%		
9	-64,76%	-64,76%		
12	-64,64%	-64,64%		
15	-64,50%	-64,50%		
18	-64,35%	-64,35%		
21	-64,32%	-64,32%		
24	-64,35%	-64,35%		
27	-64,37%	-64,37%		
30	-63,74%	-63,74%		
33	-64,38%	-64,38%		
36	-64,48%	-64,48%		

Deslocamentos - MOD12 - VT_Y+ Deslocamento em milímetros Vento 6123 — Vento Sintético Estático — Vento Sintético Dinâmico

Figura 40: Deslocamentos horizontais do MOD12 – VT_Y+

Tabela 43: Deslocamentos horizontais do MOD12 – VT_Y+

MOD12 - VT_Y+				
Altura	V.N	V.S.E	V.S.D	
0	0	0	0	
3	1,76	0,943	1,067	
6	4,896	2,632	2,967	
9	8,235	4,447	4,995	
12	11,437	6,195	6,944	
15	14,392	7,809	8,747	
18	17,056	9,267	10,375	
21	19,399	10,556	11,803	
24	21,403	11,663	13,021	
27	23,049	12,578	14,02	
30	24,328	13,291	14,794	
33	25,249	13,807	15,355	
36	25,844	14,133	15,714	

Tabela 44: Diferença percentual do MOD12 – VT_Y+

MOD12 - VT_Y+ (%)		
Altura	V.S.E	V.S.D
0	0%	0%
3	-86,64%	-64,95%
6	-86,02%	-65,02%
9	-85,18%	-64,86%
12	-84,62%	-64,70%
15	-84,30%	-64,54%
18	-84,05%	-64,40%
21	-83,77%	-64,36%
24	-83,51%	-64,37%
27	-83,25%	-64,40%
30	-83,04%	-64,45%
33	-82,87%	-64,44%
36	-82,86%	-64,46%

4.4 Esforços solicitantes

Para os esforços solicitantes houve ponderações para a escolha dos dados a serem recolhidos. Foi escolhido alguns pilares em posições diferentes para avaliar a influência dos efeitos, que foram o P1, P5, P8 e P12, como consta nas plantas de forma das figuras 18 a 20. Os pares no eixo x do gráfico correspondem a um tipo de modelo, com as duas combinações inclusas para os três casos de carga. Os esforços foram recolhidos do último tramo do pilar (térreo), com os momentos fletores e esforços normais descritos nos resultados tabulados a seguir:

Pilar P1 - Esforço Axial (kN)

1200

1000

800

400

200

1 2 3 4 5 6

Vento 6123 Vento Sintético Estático Vento Sintético Dinâmico

Figura 41: Esforço Normal no Pilar P1

Tabela 45: Esforço Axial no Pilar P1

	PILAR P1 - AXIAL				
Modelos	Comb. V.N V.S.E V.S.D				
4 PAV	SC_Y+	293,389	290,06	289,728	
4 PA V	VT_Y+	275,450	274,278	273,723	
ODAN	SC_Y+	645,041	662,055	659,892	
8 PAV	VT_Y+	588,386	616,742	613,138	
12 PAV	SC_Y+	1110,05	1157,764	1151,318	
12 PA V	VT_Y+	981,084	1060,608	1049,864	

Fonte: Elaborada pelo Autor

Tabela 46: Diferença percentual do esforço axial do Pilar P1

Diferença de Percentual					
Modelos	Modelo	V.S.E	V.S.D		
4 PAV	SC_Y+	-1,148%	-1,264%		
4 PA V	VT_Y+	-0,427%	-0,631%		
8 PAV	SC_Y+	2,570%	2,251%		
o PA V	VT_Y+	4,598%	4,037%		
12 PAV	SC_Y+	4,121%	3,584%		
12 FA V	VT_Y+	0,000%	0,000%		

Pilar P1 - Momento Fletor (kN.m)

40

35

30

25

20

15

10

5

0

1 2 3 4 5 6

Vento 6123 Vento Sintético Estático Vento Sintético Dinâmico

Figura 42: Momento Fletor no Pilar P1

Tabela 47: Momento Fletor no Pilar P1

PILAR P1 - FLETOR				
Modelos	Comb.	V.N	V.S.E	V.S.D
4 PAV	SC_Y+	0,255	1,951	1,6564
4 PA V	VT_Y+	3,282	0,3935	0,0974
ODAN	SC_Y+	3,996	0,7468	0,0262
8 PAV	VT_Y+	10,7306	2,826	4,1142
12 PAV	SC_Y+	18,0082	5,8156	7,6908
12 PA V	VT_Y+	36,0286	15,7076	18,8329

Fonte: Elaborada pelo Autor

Observação: As células marcadas em amarelo representam mudança de sentido no momento fletor.

Tabela 48: Diferença percentual do momento fletor no Pilar P1

Diferença de Percentual					
Modelos	Modelo V.S.E V.S.D				
4 PAV	SC_Y+	86,930%	84,605%		
4 PA V	VT_Y+	-734,053%	-3269,610%		
0.044	SC_Y+	-435,083%	-15151,908%		
8 PAV	VT_Y+	-279,710%	-160,819%		
12 PAV	SC_Y+	-209,653%	-134,152%		
12 PA V	VT_Y+	-129,370%	-91,307%		

Pilar P5 - Esforço (kN)

3500
2500
2000
1500
0
1 2 3 4 5 6

Vento 6123 Vento Sintético Estático Vento Sintético Dinâmico

Figura 43: Esforço Axial no Pilar P5

Tabela 49: Esforço Axial no Pilar P5

PILAR P5 - AXIAL					
Modelos	Comb. V.N V.S.E V.S.D				
4 PAV	SC_Y+	976,533	976,532	976,532	
4 PA V	VT_Y+	891,406	891,406	891,406	
ODAN	SC_Y+	1995,171	1995,17	1995,17	
8 PAV	VT_Y+	1827,549	1827,548	1827,548	
12 PAV	SC_Y+	3028,648	3028,646	3028,646	
	VT_Y+	2787,498	2787,495	2787,495	

Fonte: Elaborada pelo Autor

Tabela 50: Diferença percentual do esforço axial no Pilar P5

Diferença de Percentual					
Modelos	Modelo	Modelo V.S.E V.S.D			
4 PAV	SC_Y+	0,000%	0,000%		
4 PA V	VT_Y+	0,000%	0,000%		
8 PAV	SC_Y+	0,000%	0,000%		
δPAV	VT_Y+	0,000%	0,000%		
12 PAV	SC_Y+	0,000%	0,000%		
12 PA V	VT_Y+	0,000%	0,000%		

Pilar P5 - Momento Fletor (kN.m) ■ Vento 6123 ■ Vento Sintético Estático ■ Vento Sintético Dinâmico

Tabela 44: Momento Fletor no Pilar P5

Tabela 51: Momento Fletor no Pilar P5

	PILAR P5 - FLETOR				
Modelos	Comb.	V.N	V.S.E	V.S.D	
4 PAV	SC_Y+	14,682	6,8142	7,8691	
4 PA V	VT_Y+	24,471	11,357	13,1151	
ODAN	SC_Y+	57,0925	28,5483	33,218	
8 PAV	VT_Y+	95,1541	47,5806	55,3634	
12 PAV	SC_Y+	113,4051	60,5148	68,6461	
12 PA V	VT_Y+	189,0086	100,858	114,4102	

Fonte: Elaborada pelo Autor

Tabela 52: Diferença percentual do momento fletor no Pilar P5

Diferença de Percentual					
Modelos	Modelo	V.S.E	V.S.D		
4 PAV	SC_Y+	-115,462%	-86,578%		
4 PA V	VT_Y+	-115,468%	-86,584%		
8 PAV	SC_Y+	-99,986%	-71,872%		
8 PAV	VT_Y+	-99,985%	-71,872%		
12 PAV	SC_Y+	-87,401%	-65,203%		
12 FA V	VT_Y+	-87,401%	-65,203%		

Pilar P8 - Esforço Axial (kN)

3500
2500
2500
1500
1000
500
1 2 3 4 5 6

Vento 6123 Vento Sintético Estático Vento Sintético Dinamico

Figura 45: Esforço axial no Pilar P8

Tabela 53: Esforço Axial no Pilar P8

PILAR P8 - AXIAL				
Modelos	Comb.	V.N	V.S.E	V.S.D
4 PAV	SC_Y+	921,059	921,058	921,058
4 PA V	VT_Y+	840,414	840,414	840,414
ODAN	SC_Y+	1931,285	1931,284	1931,284
8 PAV	VT_Y+	1767,377	1767,375	1767,375
12 DAM	SC_Y+	2984,786	2984,784	2984,818
12 PAV	VT_Y+	2743,995	2743,992	2743,992

Fonte: Elaborada pelo Autor

Tabela 54: Diferença percentual do esforço axial no Pilar P8

Diferença de Percentual					
Modelos	Modelo	Modelo V.S.E			
4 PAV	SC_Y+	0,000%	0,000%		
4 PA V	VT_Y+	0,000%	0,000%		
8 PAV	SC_Y+	0,000%	0,000%		
OFAV	VT_Y+	0,000%	0,000%		
12 PAV	SC_Y+	0,000%	0,001%		
12 PA V	VT_Y+	0,000%	0,000%		

Pilar P8 - Momento Fletor (kN.m)

200
180
160
140
120
100
80
60
40
20
0
1 2 3 4 5 6

Vento 6123 Vento Sintético Estático Vento Sintético Dinâmico

Figura 46: Momento Fletor no Pilar P8

Tabela 55: Momento Fletor no Pilar P8

PILAR P8 - FLETOR				
Modelos	Comb.	V.N	V.S.E	V.S.D
4 PAV	SC_Y+	14,682	6,8136	7,8685
4 PA V	VT_Y+	24,468	11,3561	13,1141
O DAY	SC_Y+	56,9886	28,4965	33,1576
8 PAV	VT_Y+	94,981	47,4942	55,2626
12 PAV	SC_Y+	113,0594	60,3289	68,4366
12 PA V	VT_Y+	188,4323	100,5482	114,061

Fonte: Elaborada pelo Autor

Tabela 56: Diferença percentual do momento fletor no Pilar P8

Diferença de Percentual					
Modelos	Modelo	V.S.E	V.S.D		
4 PAV	SC_Y+	-115,481%	-86,592%		
4 PA V	VT_Y+	-115,461%	-86,578%		
8 PAV	SC_Y+	-99,985%	-71,872%		
8 PAV	VT_Y+	-99,984%	-71,872%		
12 PAV	SC_Y+	-87,405%	-65,203%		
12 PA V	VT_Y+	-87,405%	-65,203%		

Figura 47: Esforço Axial no Pilar P12

Tabela 57: Esforço axial no Pilar P12

PILAR P12 - AXIAL							
Modelos	Comb.	V.N	V.S.E	V.S.D			
4 PAV	SC_Y+	568,932	563,791	564,321			
4 PAV	VT_Y+	549,65	531,631	532,515			
8 PAV	SC_Y+	1303,249	1276,307	1279,729			
	VT_Y+	1261,935	1217,032	1222,736			
12 PAV	SC_Y+	2144,143	2080,802	2089,346			
	VT_Y+	2115,661	2010,093	2024,333			

Fonte: Elaborada pelo Autor

Tabela 58: Diferença percentual do esforço axial no Pilar P12

Diferença de Percentual					
Modelos	Modelo	V.S.E	V.S.D		
4 PAV	SC_Y+	-0,912%	-0,817%		
4 PA V	VT_Y+	-3,389%	-3,218%		
8 PAV	SC_Y+	-2,111%	-1,838%		
	VT_Y+	-3,690%	-3,206%		
12 PAV	SC_Y+	-3,044%	-2,623%		
	VT_Y+	-5,252%	-4,512%		

P12 - Momento Fletor (kN.m)

120

100

80

60

40

20

1 2 3 4 5 6

Vento 6123 Vento Sintético Estático Vento Sintético Dinâmico

Figura 48: Momento Fletor no Pilar P12

Tabela 59: Momento Fletor no Pilar P12

PILAR P12 - FLETOR								
Modelos	Modelos Comb. V.N V.S.E							
4 PAV	SC_Y+	15,685	11,4605	12,0274				
4 PA V	VT_Y+	20,088	13,0464	13,9913				
8 PAV	SC_Y+	35,9841	23,6648	25,6782				
	VT_Y+	51,1624	30,6301	33,9859				
12 PAV	SC_Y+	68,866	42,9072	46,8974				
	VT_Y+	104,519	61,2543	67,9047				

Fonte: Elaborada pelo Autor

Tabela 60: Diferença percentual do momento fletor no Pilar P12

Diferença de Percentual						
Modelos	Modelo	V.S.E	V.S.D			
4 PAV	SC_Y+	-115,462%	-86,578%			
4 PAV	VT_Y+	-115,468%	-86,584%			
8 PAV	SC_Y+	-99,986%	-71,872%			
	VT_Y+	-99,985%	-71,872%			
12 PAV	SC_Y+	-87,401%	-65,203%			
	VT_Y+	-87,401%	-65,203%			

Com os resultados da distribuição dos esforços na base dos pilares selecionados, é possível fazer uma análise da saída destes dados. Primeiramente, observa-se a tendência de redução da diferença de resultados do momento fletor conforme a altura aumenta.

Segundo, percebe-se que a intensidade do momento fletor na base dos pilares é mais sensível a variação da intensidade das forças do que quando comparado com os esforços axiais.

Terceiro, os pilares P5 e P8 apresentaram variação quase nula de esforço axial em todos os casos e combinações analisadas. Tal fato acontece em decorrência da forma do prédio e da direção que o vento atua, na combinação mais desfavorável. Considere a figura 61 logo abaixo. Considerando a planta do edifício como uma seção transversal, a força devida ao vento tende a gerar um momento em sentido da esquerda para a direita. Com isso, os pilares centrais (P5 e P8) se encontrariam na linha neutra desta seção, não resultando em alterações por conta deste carregamento.

Figura 61: Direção de atuação do momento fletor devido ao vento.

Por fim, no pilar P1 houve uma inversão de momentos fletores, o que ocasionou diferenças percentuais altíssimas entre as comparações analisadas. Os valores destas solicitações são baixos, resultando na troca do sentido a seguinte situação:

$$\lim_{M_2 \to 0} 1 - \left(\frac{M_1}{M_2}\right) = \infty \tag{40}$$

Sendo:

- M₁ momento fletor antes da inversão;
- M₂ momento fletor depois da inversão.

5 CONCLUSÃO

O presente trabalho conclui que o método do vento sintético é uma metodologia alternativa para a determinação dos esforços devidos ao vento em uma estrutura. Possui uma vantagem intrínseca em certo aspecto ao método discreto da NBR 6123 no que tange aos processos numéricos para a obtenção dos esforços, com as séries aleatórias gerados nos modelos e a amplitude de harmônicos possíveis de análise, simulando o comportamento randômico do vento.

Para os modelos analisados, percebeu-se uma redução considerável da intensidade das forças nodais obtidas pelo método do vento sintético em relação ao método discreto da NBR 6123. Isso acontece pelo fato de o vento sintético usar de ângulos de fases randômicos em séries iteradas por processos numéricos. Além disso, o vento sintético utiliza-se diversas tipologias de velocidades de rajadas para a montagem de suas parcelas flutuantes. Ainda, ressalta-se o intervalo de tempo que a metodologia de Franco (1993) adota para o processo de obtenção dos esforços flutuantes finais.

Infere-se que, para edificações de altura mais baixas, os valores normativos se mostraram conservadores em relação ao método do vento sintético. Tal raciocínio é concluído pois a frequência fundamental é inversamente proporcional a altura do edifício, sendo aquela grandeza de fundamental importância na determinação de diversos parâmetros ao longo do procedimento de cálculo do vento sintético e pelas

diferenças de porcentagem na comparação dos esforços obtidos pelos métodos, principalmente quando relativo ao momento fletor atuante na base dos pilares.

A partir do método do vento sintético, é possível conhecer o centro de rajada do edifício, e ainda em cálculo identificar a zona de excitação especial da estrutura, sendo um ponto de atenção na execução de um projeto no âmbito de análise das cargas devidas ao vento.

5.1 Sugestões para futuros trabalhos

Sugere-se alguns estudos para futuras pesquisas sobre o método do vento sintético, dentre elas:

- A presença de um núcleo rígido e sua influência nas forças obtidas do método:
- Edificações de maior porte com arquitetura arrojada e suas respostas ao método;
- Verificações de acelerações e conforto humano com os esforços obtidos pelo método.

REFERÊNCIAS

ALMEIDA et. Al.; Critérios de Vibração para Estruturas de Piso de Concreto Prémoldado. 1º encontro nacional de pesquisa-projeto-produção em concreto prémoldado. São Carlos, 2005.

ALVA, GERSON. **ECC 1008 – Estruturas de concreto – Ações Horizontais em Edifícios.** 27 Slides.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. **NBR 6118: Projeto de estruturas de concreto - Procedimento**. Rio de Janeiro, 2014.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. **NBR 6123: Forças devidas ao vento em edificações.** Rio de Janeiro, 1988.

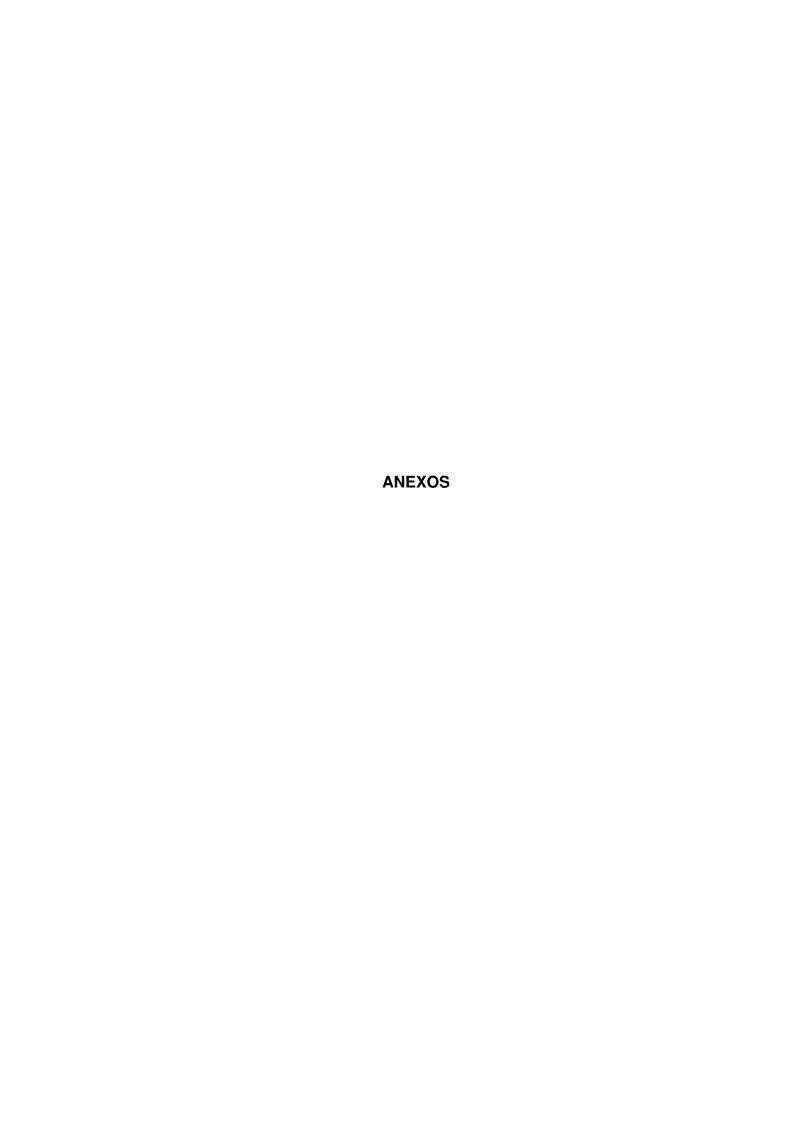
ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. **NBR 8681. Ações e** segurança nas estruturas. Rio de Janeiro, 2003.

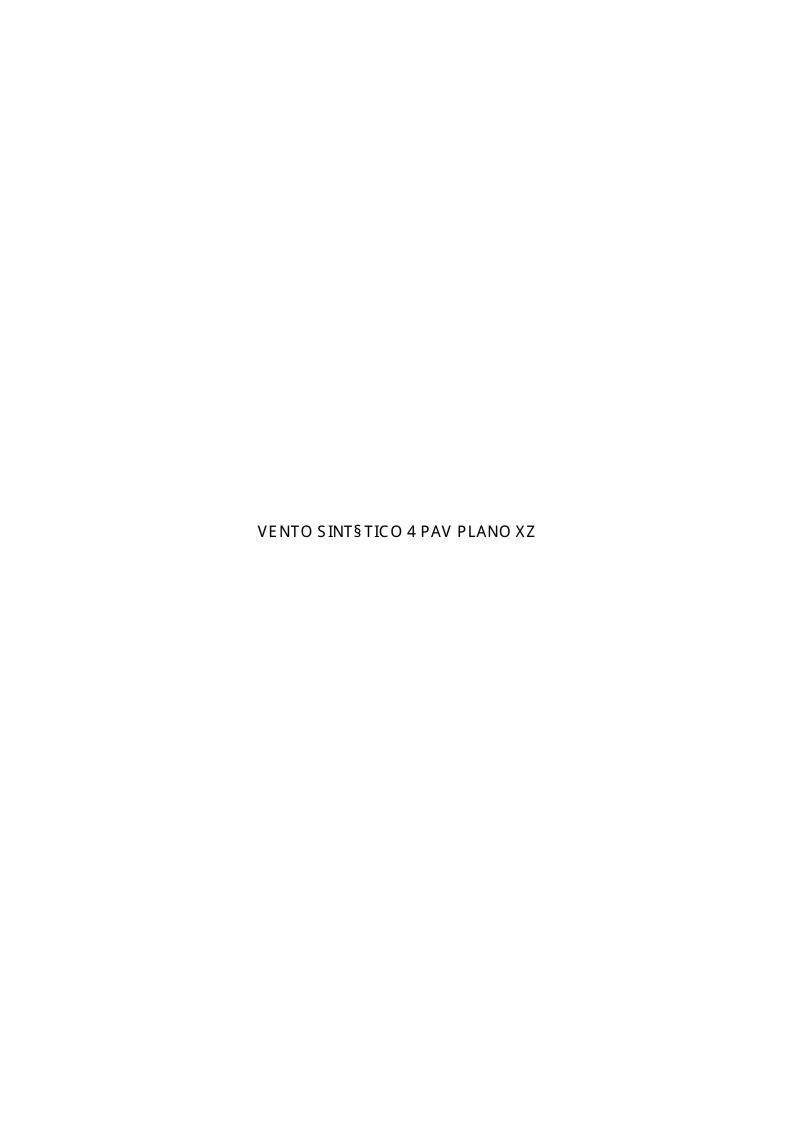
BLESSMANN, J. Introdução ao estudo das ações dinâmicas do vento. 1.ed. Porto Alegre, UFRGS, 1988.

BRASIL, Reyolando M.L.R.F. **Introdução à Dinâmica das Estruturas.** Blucher, São Paulo, 2015.

CARRIL JR., C. F. Análise numérica e experimental do efeito dinâmico do vento em torres metálicas treliçadas para telecomunicações. 2000. 143. F. Tese (Doutorado em Engenharia Civil) – Escola Politécnica, Universidade de São Paulo, São Paulo, 2000.

CUNHA J., B. F. R. D. Contribuição ao Estudo dos Efeitos do Vento em Edifícios Altos: Estudo de Caso na Cidade de Goiânia. Universidade Federal de Goiás. Goiânia. 2012.


FRANCO, M. **Direct along wind dynamic analysis of tall structures**. Boletim técnico, São Paulo, EPUSP, BT/PEF/9303, 1993.


KIMURA, A. Informática aplicada a estrutura de concreto armado. SP: Pini, 2007.

LAZANHA, E. C.; Análise Dinâmica Elasto-plástica de Estruturas Metálicas sob Excitação Aleatória de Vento. – Dissertação de Mestrado. Universidade de São Paulo – USP. São Paulo. 2003.

RAO, S. S. Mechanical vibrations. 5th ed. University of Miami. Miami. Pearson. 2011

SANTOS, Vagner H. Comparação do Método Discreto NBR 6123 (ABNT-1988) e do Método do Vento Sintético (FRANCO-1993), para edificações em concreto armado de múltiplos pavimentos. Dissertação (Mestrado) — Programa de Pós-Graduação em Engenharia Civil, Universidade Tecnológica Federal do Paraná. Curitiba, 2018.

a) Dados do vento:

- Velocidade B®ica (m/s):

 $V_o = 30$

- Fator Topogr®fico:

 $S_1 = 1.00$

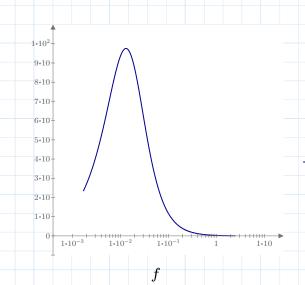
- Fator Estat^ostico:

- $S_3 = 1.00$
- Velocidade de Projeto (velocidade m¶dia sobre 10 minutos a 10 metros de altura sobre o solo, em terreno de categoria II da NBR 6123), em m/s:

$$V_p \coloneqq 0.69 \cdot V_o \cdot S_1 \cdot S_3$$

$$V_p = 20.7$$

- b) Espectro da Velocidade do vento:
- Frequ ncia de Rajadas (Santos, 2018):


f = 0.0017, 0.0018...2.5

- Frequ, ncia Adimensional:

$$x(f) \coloneqq \frac{1220 \cdot f}{V_p}$$

- Espectro de pot, ncia Davenport (FRANCO, 1993):

$$Sr(f) \coloneqq rac{4 \cdot x(f)^2}{\left(1 + x(f)^2\right)^{\frac{4}{3}}} \cdot f$$

c) Parametros da Edifica´² o:

- Frequencia Fundamental (do Modo 1 de vibra ´² o):

r = 1.62

- Quantidade de nÆs:

j = 1, 2...12

- Ξrea de Influ ncia:
- Altura dos nÆs:
- Coeficiente de Arrasto:

	[3.75] 7.5 3.75 7.5	12 12 12 12 9	
$A_j =$	15 7.5 7.5 15 7.5 7.5 15 7.5 15	$z_{j} = \begin{vmatrix} 9 \\ 9 \\ 6 \\ 6 \\ 6 \\ 3 \\ 3 \\ 3 \end{vmatrix}$	

 $Ca_{j}=egin{array}{c} 0.78 \ 0.78 \ 0.78 \ 0.78 \ 0.78 \ 0.78 \ 0.78 \ 0.78 \ 0.78 \ 0.78 \ 0.78 \ 0.78 \ 0.78 \ 0.78 \ 0.78 \ \end{array}$

0.78 0.78 0.78

- d) Decomposi´² o das pressÞes flutuantes:
- Nßmero de harm×nicos:

k = 1, 2...12

- Frequencia Ressonante:

 $R \coloneqq 3$

- Perºodo Ressonante:

 $T_R \coloneqq \frac{1}{R}$

- Frequencia para o harm×nico "k":

 $f_k = \frac{r}{2^{(k-R)}}$

- Perºodo para o harm×nico "k":

 $T_k \coloneqq \frac{1}{f_k}$

- Intervalos de frequencias:

$$f_{a_k} = \frac{r}{2^{(k-0.5-R)}}$$

$$f_{p_k} = \frac{r}{2^{(k+0.5-R)}}$$

- Valores	dos in	tervalo	s de 1	freque	ncia:
		[0.16]	1]		

$$f_{a_k} = \begin{pmatrix} 4.582 \\ 2.291 \\ 1.146 \\ 0.573 \\ 0.286 \\ 0.143 \\ 0.072 \\ 0.036 \\ 0.018 \\ 0.009 \\ 0.004 \\ \end{pmatrix}$$

$$f_{p_k} = egin{bmatrix} 4.582 \ 2.291 \ 1.146 \ 0.573 \ 0.286 \ 0.143 \ 0.072 \ 0.036 \ 0.018 \ 0.009 \ 0.004 \ 0.002 \ \end{bmatrix}$$

- Par° metro "Ck":

$$C_k \coloneqq \sqrt{2 \cdot \int\limits_{f_{p_k}}^{f_{a_k}} Sr(f) \, \mathrm{d}f} \qquad \qquad c_k \coloneqq rac{C_k}{\sum\limits_k C_k}$$

- Gera '2 o de Mhgulos de Fase AleatÆrios:

$$\theta_{k} \coloneqq \operatorname{rnd}(2 \cdot \pi)$$

$$\begin{bmatrix} 5.417 \\ 4.899 \\ 6.263 \\ 3.842 \\ 1.673 \\ \end{bmatrix}$$

$$\theta_{k} = \begin{bmatrix} 5.279 \\ 2.362 \\ 4.255 \\ 0.055 \\ 1.733 \\ 3.694 \\ 5.263 \end{bmatrix}$$

- Tempo: t := 0, 0.1..600
- Determina´² o da Parcela Flutuante:

$$P(t,k) \coloneqq \cos\left(2 \cdot \frac{\pi}{T_R \cdot 2^{k-R}} \cdot t - \theta_k\right)$$

- Corre´Þes sugeridas por FRANCO (1993):

$rx_{_{k}}$:		k	$cc_k \coloneqq c_k$	cc_{j}	$c = \frac{c}{R}$	co	$c_{R-1} \coloneqq c$: +-	$\frac{C_R}{4}$	$cc_{_{R+}}$	$:=c_{R+1}^{}+$	$\frac{c_R}{4}$
	1		$ \begin{bmatrix} 0.25 \end{bmatrix} $		0.03		[0.03]		[6.48]		0.154	
	2		0.5		0.05		0.038		3.24		0.309	
	3		1		0.024		0.048		1.62		0.617	
	4		2		0.073		0.061		0.81		1.235	
	5		4		0.077		0.077		0.405		2.469	
k =	6	rx =	8	cc =	0.096	c =	0.096	f _	0.203	T =	4.938	
h —	7	L_k	16	cc_k	0.119	c_k	0.119	$f_{_k}$ =	0.101		9.877	
	8		32		0.142		0.142		0.051		19.753	
	9		64		0.149		0.149		0.025		39.506	
	10		128		0.122		0.122		0.013		79.012	
	11		256		0.077		0.077		0.006		158.025	
	12		$\begin{bmatrix} 512 \end{bmatrix}$		[0.041]		[0.041]		[0.003]		[316.049]	
							_		_			

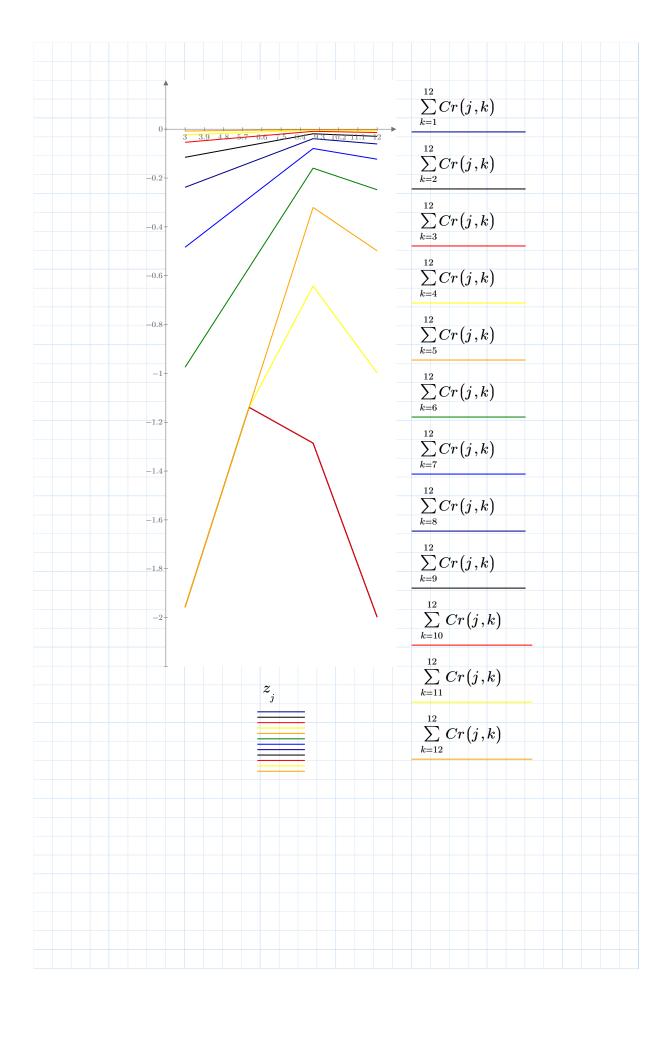
Harm×nicos corrigidos conforme o espectro do vento:

$$Pp(t,k) = P(t,k) \cdot cc_k$$

- e) Correla´² o Espacial
- Tamanho da Rajada Equivalente:

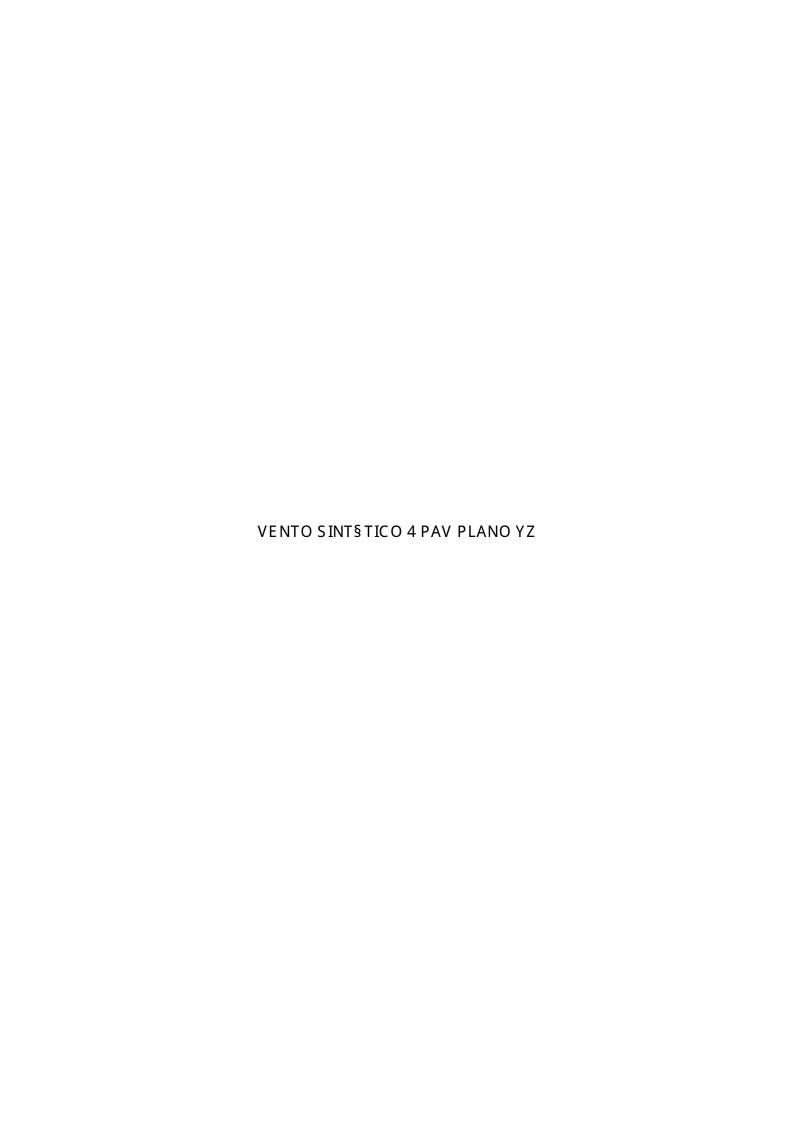
0.456 0.913 1.825 3.651 7.302 14.603 29.206 58.413 116.825 233.651 467.302	$\frac{-1}{\Delta z 0_k} =$	-2.191	$\frac{1}{\Delta z 0_k} =$	[2.191] 1.096 0.548 0.274 0.137 0.068 0.034 0.017 0.009 0.004 0.002
253.051 467.302 934.603		-0.004 -0.002 -0.001		$0.004 \\ 0.002 \\ 0.001$

Correla '2 o Triangular:


$$L_{_{k}}\!\coloneqq\!2\cdot\!\Delta\!z0_{_{k}}$$

 $\Delta z 0_k \coloneqq \frac{V_p}{7 \cdot f_k}$

$$z_{_{_{1}}}\!\coloneqq\!12$$


Centro de Rajada:
$$G_c \coloneqq z - \frac{L_R}{2} = 10.175$$

$Cr(j,k)\!\coloneqq\! ext{if }G_c\!\leq\! z_j\!\leq\! G_c\!+\!\Delta\! z0_k$	
$egin{aligned} rac{1}{\Delta z 0_k} oldsymbol{\cdot} \left(G_c - z_j ight) \ & ext{else if } G_c - \Delta z 0_k \! \leq \! z_j \! \leq \! G \end{aligned}$	
else if $G_c - \Delta z 0_{{k}} {\leq} z_{{j}} {\leq} G$	c
$\left\ rac{-1}{\Delta z 0_k}{ullet}\left(G_c{-z_j} ight)$	
e) Harm×nico de for ´as nos nÆs:	
	$\left(\begin{array}{c}z\\j\end{array}\right)^{0.185}$
- Velocidade M¶dia (600s):	$Vm_{j} = 0.5934 \cdot V_{o} \cdot \left(\frac{z_{j}}{10}\right)^{0.185}$
Valorido do Diaz (22)	$V_{j} = 0.94 \cdot V_{o} \cdot \left(\frac{z_{j}}{10}\right)^{0.1}$
- Velocidade de Pico (3s):	$V_j = 0.94 \cdot V_o \cdot \left(\frac{10}{10}\right)$
- Press² o de Pico:	$q_j = 0.613 \cdot \left(V_j\right)^2$
- Carregamento Est®ico:	$q_{est_j} \coloneqq 0.613 \cdot \left(Vm_j\right)^2$
	$Fest_{j}\!\coloneqq\! A_{j}\!\cdot\! Ca_{j}\!\cdot\! q_{est_{j}}$
- Press² o Flutuante:	$q_{f_j}\!\coloneqq\!q_j\!-\!q_{est_j}$
- Harm×nicos k= 1 a m (m ¶ o nßmero de harm×nicos):	
$Q(t,j,k) \coloneqq q_{f_j} \boldsymbol{\cdot} Cr(j,k) \boldsymbol{\cdot} Pp(t,k)$	
$Ff(t,j,k) \coloneqq Ca_{j} \cdot A_{j} \cdot Q(t,j,k)$	
$Pdinig(t,j)\coloneqq\sum_{k}Ffig(t,j,kig)$	

$P1_{i} = Pdin\left(\frac{l-1}{10}, 1\right)$ $P2_{i} = Pdin\left(\frac{l-1}{10}, 2\right)$ $P3_{i} = Pdin\left(\frac{l-1}{10}, 3\right)$ $P4_{i} = Pdin\left(\frac{l-1}{10}, 3\right)$ $P1_{i} = Pdin\left(\frac{l-1}{10}, 3\right)$ $P1_{i} = Pdin\left(\frac{l-1}{10}, 3\right)$ $P1_{i} = Pdin\left(\frac{l-1}{10}, 10\right)$ $P1_{i} = Pdin\left(\frac{l-1}{10}, 10\right)$ $P1_{i} = Pdin\left(\frac{l-1}{10}, 11\right)$ $P1_{i} = Pdin\left(\frac{l-1}{10}, 10\right)$ $P1_{i} = P$		l = 1, 26001
$P_{i}^{3} := Pdin\left(\frac{l-1}{10}, 3\right)$ $P_{i}^{3} := Pdin\left(\frac{l-1}{10}, 4\right)$ $P_{i}^{1} := Pdin\left(\frac{l-1}{10}, 10\right)$ $P_{i}^{1} := Pdin\left(\frac{l-1}{10}, 10\right)$ $P_{i}^{1} := Pdin\left(\frac{l-1}{10}, 11\right)$ $P_{i}^{1} := Pdin\left(\frac{l-1}{10}, 11\right)$ $P_{i}^{2} := Pdin\left(\frac{l-1}{10}, 11\right)$ $P_{i}^{2} := Pdin\left(\frac{l-1}{10}, 12\right)$ $P_{i}^{2} := Pdin\left(\frac{l-1}{10}, 1$	$P1_l = Pdin\left(\frac{l-1}{10}, 1\right)$	$P7_{_{l}} \!\coloneqq\! Pdin\!\left(\!\frac{l-1}{10},7\right)$
$P4_{i} = Pdin\left(\frac{l-1}{10}, 4\right) \qquad P10_{i} = Pdin\left(\frac{l-1}{10}, 10\right)$ $P5_{i} = Pdin\left(\frac{l-1}{10}, 5\right) \qquad P11_{i} = Pdin\left(\frac{l-1}{10}, 11\right)$ $P6_{i} = Pdin\left(\frac{l-1}{10}, 6\right) \qquad P12_{i} = Pdin\left(\frac{l-1}{10}, 12\right)$ $F_{t1} = \max(P1) + Fest_{1} \qquad F_{t2} = Ras(P2) + Fest_{2} \qquad F_{t2} = 1.337 \cdot 10^{3}$ $F_{t3} = \max(P3) + Fest_{3} \qquad F_{t3} = 668.61$ $F_{t4} = \max(P4) + Fest_{4} \qquad F_{t4} = 1.169 \cdot 10^{3}$ $F_{t5} = \max(P5) + Fest_{5} \qquad F_{t5} = 2.338 \cdot 10^{3}$ $F_{t6} = \max(P6) + Fest_{6} \qquad F_{t6} = 1.169 \cdot 10^{3}$ $F_{t7} = \max(P7) + Fest_{7} \qquad F_{t7} = 1.092 \cdot 10^{3}$	$P2_{l} \coloneqq Pdin\left(\frac{l-1}{10},2\right)$	$P8_{l} \!\coloneqq\! Pdin\!\left(\!\frac{l-1}{10},8\right)$
$P5_{l} \coloneqq Pdin\left(\frac{l-1}{10}, 5\right) \qquad P11_{l} \coloneqq Pdin\left(\frac{l-1}{10}, 11\right)$ $P6_{l} \coloneqq Pdin\left(\frac{l-1}{10}, 6\right) \qquad P12_{l} \coloneqq Pdin\left(\frac{l-1}{10}, 12\right)$ $F_{t1} \coloneqq \max\left(P1\right) + Fest_{1} \qquad F_{t2} \equiv \max\left(P2\right) + Fest_{2} \qquad F_{t2} = 1.337 \cdot 10^{3}$ $F_{t3} \coloneqq \max\left(P3\right) + Fest_{3} \qquad F_{t3} = 668.61$ $F_{t4} \coloneqq \max\left(P4\right) + Fest_{4} \qquad F_{t4} = 1.169 \cdot 10^{3}$ $F_{t5} \coloneqq \max\left(P5\right) + Fest_{5} \qquad F_{t5} = 2.338 \cdot 10^{3}$ $F_{t6} \coloneqq \max\left(P6\right) + Fest_{6} \qquad F_{t6} = 1.169 \cdot 10^{3}$ $F_{t7} \coloneqq \max\left(P7\right) + Fest_{7} \qquad F_{t7} = 1.092 \cdot 10^{3}$	$P3_l = Pdin\left(\frac{l-1}{10}, 3\right)$	$P9_{l}$:= $Pdin\left(rac{l-1}{10},9 ight)$
$P6_{l} \coloneqq Pdin\left(\frac{l-1}{10}, 6\right) \qquad P12_{l} \coloneqq Pdin\left(\frac{l-1}{10}, 12\right)$ $F_{t1} \coloneqq \max\left(P1\right) + Fest_{l} \qquad F_{t1} = 668.61$ $F_{t2} \coloneqq \max\left(P2\right) + Fest_{2} \qquad F_{t2} = 1.337 \cdot 10^{3}$ $F_{t3} \coloneqq \max\left(P3\right) + Fest_{3} \qquad F_{t3} = 668.61$ $F_{t4} \coloneqq \max\left(P4\right) + Fest_{4} \qquad F_{t4} = 1.169 \cdot 10^{3}$ $F_{t5} \coloneqq \max\left(P5\right) + Fest_{5} \qquad F_{t5} = 2.338 \cdot 10^{3}$ $F_{t6} \coloneqq \max\left(P6\right) + Fest_{6} \qquad F_{t6} = 1.169 \cdot 10^{3}$ $F_{t7} \coloneqq \max\left(P7\right) + Fest_{7} \qquad F_{t7} = 1.092 \cdot 10^{3}$	$P4_{l} \coloneqq Pdin\left(\frac{l-1}{10}, 4\right)$	$P10_{_{l}}\!\coloneqq\!Pdin\!\left(\!rac{l-1}{10},10 ight)$
$F_{t1} \coloneqq \max(P1) + Fest_{1} \qquad F_{t1} = 668.61$ $F_{t2} \coloneqq \max(P2) + Fest_{2} \qquad F_{t2} = 1.337 \cdot 10^{3}$ $F_{t3} \coloneqq \max(P3) + Fest_{3} \qquad F_{t3} = 668.61$ $F_{t4} \coloneqq \max(P4) + Fest_{4} \qquad F_{t4} = 1.169 \cdot 10^{3}$ $F_{t5} \coloneqq \max(P5) + Fest_{5} \qquad F_{t5} = 2.338 \cdot 10^{3}$ $F_{t6} \coloneqq \max(P6) + Fest_{6} \qquad F_{t6} = 1.169 \cdot 10^{3}$ $F_{t7} \coloneqq \max(P7) + Fest_{7} \qquad F_{t7} = 1.092 \cdot 10^{3}$	$P5_{l} \coloneqq Pdin\left(\frac{l-1}{10}, 5\right)$	$P11_{_{l}}\!\coloneqq\!Pdin\!\left(\!rac{l-1}{10},11 ight)$
$F_{t2} \coloneqq \max(P2) + Fest_{2}$ $F_{t3} \coloneqq \max(P3) + Fest_{3}$ $F_{t3} = 668.61$ $F_{t4} \coloneqq \max(P4) + Fest_{4}$ $F_{t5} \coloneqq \max(P5) + Fest_{5}$ $F_{t5} \coloneqq \max(P6) + Fest_{6}$ $F_{t6} \coloneqq \max(P7) + Fest_{7}$ $F_{t7} \coloneqq \max(P7) + Fest_{7}$ $F_{t7} = 1.092 \cdot 10^{3}$	$P6_{l} = Pdin\left(\frac{l-1}{10}, 6\right)$	$P12_{l} \coloneqq Pdin\left(\frac{l-1}{10},12\right)$
$F_{t2} \coloneqq \max(P2) + Fest_{2}$ $F_{t3} \coloneqq \max(P3) + Fest_{3}$ $F_{t3} \coloneqq \max(P4) + Fest_{4}$ $F_{t4} \coloneqq \max(P4) + Fest_{5}$ $F_{t5} \coloneqq \max(P5) + Fest_{5}$ $F_{t5} \coloneqq \max(P6) + Fest_{6}$ $F_{t6} \coloneqq \max(P7) + Fest_{7}$ $F_{t7} \coloneqq \max(P7) + Fest_{7}$ $F_{t7} \equiv 1.092 \cdot 10^{3}$		
$F_{t2} \coloneqq \max(P2) + Fest_{2}$ $F_{t3} \coloneqq \max(P3) + Fest_{3}$ $F_{t3} \coloneqq \max(P4) + Fest_{4}$ $F_{t4} \coloneqq \max(P4) + Fest_{5}$ $F_{t5} \coloneqq \max(P5) + Fest_{5}$ $F_{t5} \coloneqq \max(P6) + Fest_{6}$ $F_{t6} \coloneqq \max(P7) + Fest_{7}$ $F_{t7} \coloneqq \max(P7) + Fest_{7}$ $F_{t7} \coloneqq \max(P7) + Fest_{7}$		
$F_{t3} \coloneqq \max(P3) + Fest_{3}$ $F_{t4} \coloneqq \max(P4) + Fest_{4}$ $F_{t5} \coloneqq \max(P5) + Fest_{5}$ $F_{t6} \coloneqq \max(P6) + Fest_{6}$ $F_{t6} \coloneqq \max(P7) + Fest_{7}$ $F_{t7} \coloneqq \max(P7) + Fest_{7}$ $F_{t7} \coloneqq \max(P7) + Fest_{7}$	$F_{t1} \coloneqq \max(P1) + Fest_1$	$F_{t1} = 668.61$
$F_{t4} \coloneqq \max(P4) + Fest_4$ $F_{t5} \coloneqq \max(P5) + Fest_5$ $F_{t6} \coloneqq \max(P6) + Fest_6$ $F_{t6} \coloneqq \max(P7) + Fest_7$ $F_{t7} \coloneqq \max(P7) + Fest_7$ $F_{t7} \coloneqq \max(P7) + Fest_7$	$F_{t2} \coloneqq \max\left(P2\right) + Fest_{2}$	$F_{t2} = 1.337 \cdot 10^3$
$F_{t5} \coloneqq \max(P5) + Fest_5$ $F_{t6} \coloneqq \max(P6) + Fest_6$ $F_{t6} \coloneqq \max(P7) + Fest_7$ $F_{t7} \coloneqq \max(P7) + Fest_7$ $F_{t7} \coloneqq 1.092 \cdot 10^3$	$F_{t3} = \max(P3) + Fest_3$	$F_{t3} = 668.61$
$F_{t6} \coloneqq \max(P6) + Fest_{6}$ $F_{t6} = 1.169 \cdot 10^{3}$ $F_{t7} \coloneqq \max(P7) + Fest_{7}$ $F_{t7} = 1.092 \cdot 10^{3}$	$F_{t4} = \max(P4) + Fest_4$	$F_{t4} = 1.169 \cdot 10^3$
$F_{t7} = \max(P7) + Fest_7$ $F_{t7} = 1.092 \cdot 10^3$	$F_{t5} \coloneqq \max\left(P5\right) + Fest_5$	$F_{t5} \!=\! 2.338 \! \cdot \! 10^3$
	$F_{t6} = \max(P6) + Fest_6$	$F_{t6}\!=\!1.169\!\cdot\!10^3$
$F_{t8} = \max(P8) + Fest$ $F_{t8} = 2.184 \cdot 10^3$	$F_{t7} = \max(P7) + Fest_{\tau}$	$F_{t7} = 1.092 \cdot 10^3$
	$F_{t8} = \max(P8) + Fest_{8}$	$F_{t8}\!=\!2.184\!\cdot\!10^3$
$F_{t9} = \max(P9) + Fest_9$ $F_{t9} = 1.092 \cdot 10^3$	$F_{t9} \coloneqq \max\left(P9\right) + Fest_{9}$	$F_{t9} = 1.092 \cdot 10^3$

$F_{t10} = \max(P10) + Fest_{10}$	$F_{t10} \! = \! 968.531$
$F_{t11} := \max(P11) + Fest_{11}$	$F_{t11} \! = \! 1.937 \cdot 10^3$
$F_{t12} := \max(P12) + Fest_{12}$	$F_{t12}\!=\!968.531$

a) Dados do vento:

- Velocidade B®ica (m/s):

 $V_o = 30$

- Fator Topogr®fico:

 $S_1 = 1.00$

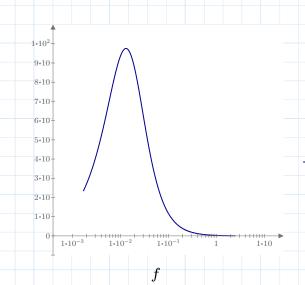
- Fator Estatostico:

- $S_3 = 1.00$
- Velocidade de Projeto (velocidade m¶dia sobre 10 minutos a 10 metros de altura sobre o solo, em terreno de categoria II da NBR 6123), em m/s:

$$V_p \coloneqq 0.69 \cdot V_o \cdot S_1 \cdot S_3$$

$$V_p = 20.7$$

- b) Espectro da Velocidade do vento:
- Frequ ncia de Rajadas (Santos, 2018):


f = 0.0017, 0.0018...2.5

- Frequ, ncia Adimensional:

$$x(f) \coloneqq \frac{1220 \cdot f}{V_p}$$

- Espectro de pot, ncia Davenport (FRANCO, 1993):

$$Sr(f) \coloneqq rac{4 \cdot x(f)^2}{\left(1 + x(f)^2\right)^{\frac{4}{3}}} \cdot f$$

c) Parametros da Edifica ´² o:

- Frequencia Fundamental (do Modo 1 de vibra ² o):
- Quantidade de nÆs:
- Erea de Influ, ncia:
- Altura dos nÆs:

- r = 1.62
- j = 1, 2...20
- Coeficiente de Arrasto:

	3.75 7.5	12 12 12 12 12 9 10 10 10 10 10 10 10 10 10 10 10 10 10 1		1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2
$A_j = $	7.5 15 15 15 7.5 15 15 15 15 15 15 15	6 6 6 6 6 3 3 3 3 3 3	$Ca_j =$	1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2

d) Decomposi´² o das pressÞes flutuantes:

- Nßmero de harm×nicos:
- Frequencia Ressonante:
- Perºodo Ressonante:
- Frequencia para o harm×nico "k":
- Perºodo para o harm×nico "k":

- k = 1, 2...12
- $R \coloneqq 3$
- $T_R \!\coloneqq\! \frac{1}{R}$
- $f_k = \frac{r}{2^{(k-R)}}$
- $T_k \coloneqq \frac{1}{f_k}$

- Intervalos de frequ	iencias:			
$f_{a_k} \coloneqq rac{}{2^{(k)}}$	$r \over -0.5-R)$		$f_{p_k} \coloneqq {2}$	$r \over (k+0.5-R)$
- Valores dos interva	llos de frequencia:			
4.5	164] 582 291		$egin{bmatrix} 4.58 \\ 2.29 \\ 1.14 \\ 0.57 \end{bmatrix}$	91 46
$f_{a_k} = egin{bmatrix} 0.5 \\ 0.2 \\ 0.1 \end{bmatrix}$	573 286 143		$f_{p_k} = \begin{bmatrix} 0.3 \\ 0.28 \\ 0.14 \\ 0.03 \\ 0.03 \end{bmatrix}$	86
0.0	072 036 018 009		0.03 0.03 0.00 0.00	18 99
	004		0.00	
- Par° metro "Ck":				
$C_k \coloneqq \sqrt{2 \cdot \int\limits_{f_{p_k}}^{f_{a_k}} Sr(f) \mathrm{d}}$	$c_k = \frac{C}{\sum_{k=1}^{\infty}}$			
- Gera´² o de Mngulo	s de Fase Aleat <i>A</i> rio	s:		
	$ heta_k$:=	$\operatorname{rnd}(2\boldsymbol{\cdot}\boldsymbol{\pi})$		
		[0.008] 1.215] 3.676] 2.201		
	$ heta_k =$	5.17 1.094 4.464 1.91		
		0.574 0.926 6.211 0.748		
- Tempo:			t	:=0,0.1600

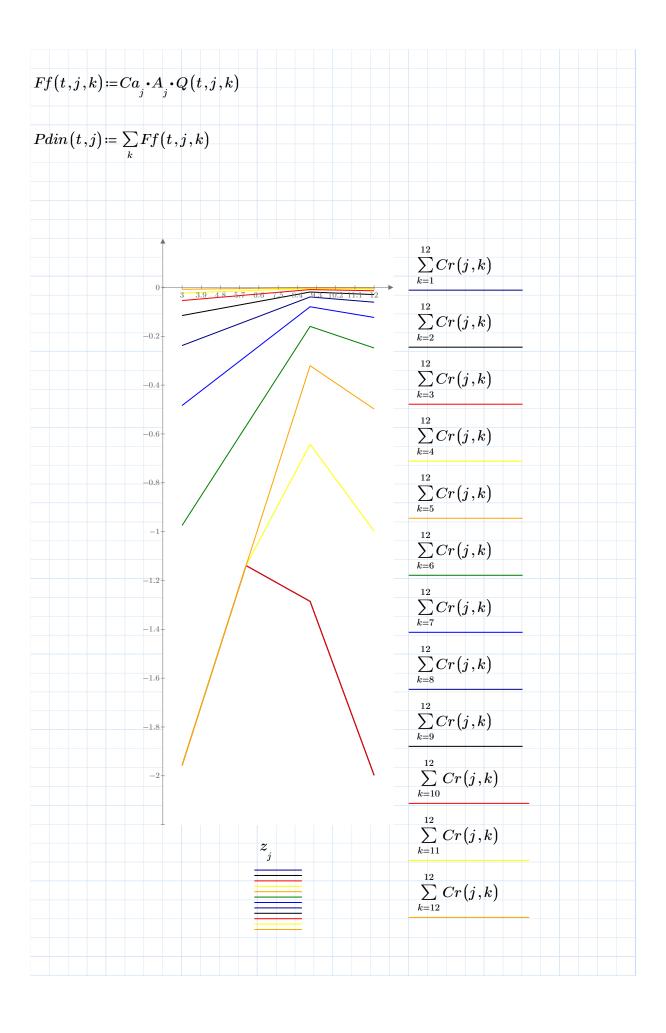
- Determina 2 o da Parcela Flutuante:

$$P(t,k) \coloneqq \cos\left(2 \cdot \frac{\pi}{T_R \cdot 2^{k-R}} \cdot t - \theta_k\right)$$

- Corre 'Pes sugeridas por FRANCO (1993):

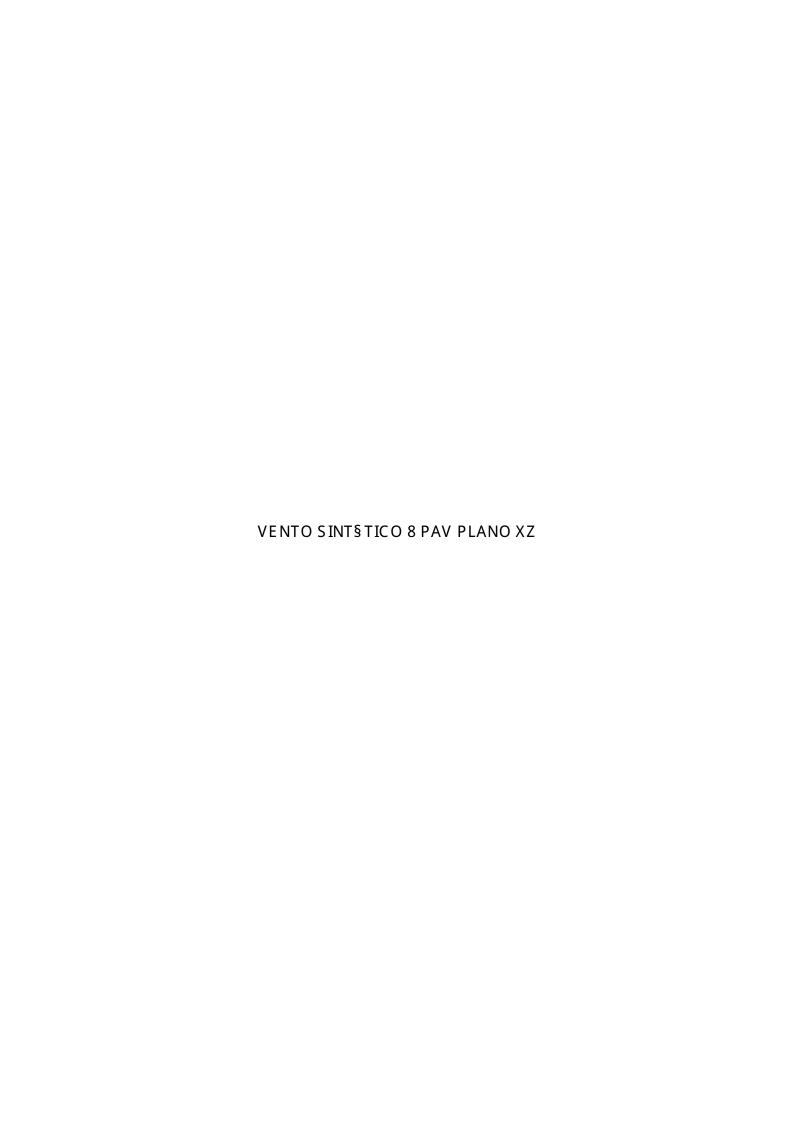
	[0.25]	0.03	0.03	6.48	[0.154]
2	0.5	0.05	0.038	3.24	0.309
3	1	0.024	0.048	1.62	0.617
4	2	0.073	0.061	0.81	1.235
5	4	0.077	0.077	0.405	2.469
$k = \begin{vmatrix} 6 \\ rx \end{vmatrix}$	_ 8	cc = 0.096	c = 0.096	$_{f} = 0.203$	T = 4.938
$7 \mid 7 \mid \omega_k$		k = 0.119	k = 0.119	$\frac{J_{k}}{0.101}$	$\frac{1}{k}$ 9.877
8	32	0.142	0.142	0.051	19.753
9	64	0.149	0.149	0.025	39.506
10	128	0.122	0.122	0.013	79.012
11	256	0.077	0.077	0.006	158.025
$\lfloor 12 \rfloor$	[512]	[0.041]	$\lfloor 0.041 \rfloor$	[0.003]	[316.049]

Harm×nicos corrigidos conforme o espectro do vento:


$$Pp(t,k) = P(t,k) \cdot cc_k$$

e) Correla '2 o Espacial

$$\begin{bmatrix} 0.456 \\ 0.913 \\ 1.825 \\ 3.651 \\ 7.302 \\ \Delta z 0_k = \begin{bmatrix} -2.191 \\ -1.096 \\ -0.548 \\ 0.274 \\ -0.137 \\ -0.0137 \\ 116.825 \\ 233.651 \\ 467.302 \\ 934.603 \end{bmatrix} = \begin{bmatrix} -2.191 \\ -1.096 \\ -0.548 \\ -0.274 \\ -0.137 \\ -0.068 \\ -0.034 \\ -0.017 \\ -0.009 \\ -0.004 \\ -0.002 \\ -0.001 \end{bmatrix} = \begin{bmatrix} 2.191 \\ 1.096 \\ 0.548 \\ 0.274 \\ 0.137 \\ -0.137 \\ -0.068 \\ 0.034 \\ 0.017 \\ 0.009 \\ 0.009 \\ 0.009 \\ 0.0002 \\ 0.001 \end{bmatrix}$$


 $\Delta z 0_k \coloneqq \frac{V_p}{7 \cdot f_s}$

Correla´² o Triangular:	$L_{_{k}}\!\coloneqq\!2\cdot\!\Delta z0_{_{k}}$
$z_1 \coloneqq 12$	
Centro de Rajada: $G_c \coloneqq z_1 - \frac{L_R}{2} = 10.175$	
$Cr(j,k) \coloneqq ext{if } G_c \! \leq \! z_j \! \leq \! G_c \! + \! \Delta z 0_k$	
$egin{aligned} & rac{1}{\Delta z 0_k} oldsymbol{\cdot} \left(G_c - z_j ight) \ & ext{else if } G_c - \Delta z 0_k \!\leq\! z_j \!\leq\! 0 \end{aligned}$	
else if $G_c - \Delta z 0_k \! \leq \! z_j \! \leq \! 0$	G_c
$\left\ rac{-1}{{\Delta z}0_k}{m \cdot}\left(G_c{-z}_j ight) ight.$ else	
e) Harm×nico de for´as nos nÆs:	
	$(z)^{0.185}$
- Velocidade M¶dia (600s):	$Vm_{j} = 0.5934 \cdot V_{o} \cdot \left(\frac{z_{j}}{10}\right)^{0.185}$
	$(z)^{0.1}$
- Velocidade de Pico (3s):	$V_j \coloneqq 0.94 \cdot V_o \cdot \left(\frac{z_j}{10}\right)^{0.1}$
- Press² o de Pico:	$q_{_{j}} = 0.613 \cdot \left(V_{_{j}}\right)^{2}$
- Carregamento Est®ico:	$q_{est_j} \coloneqq 0.613 \cdot \left(Vm_j^{} ight)^2$
	$Fest_{j} \coloneqq A_{j} \cdot Ca_{j} \cdot q_{est_{j}}$
- Press² o Flutuante:	$q_{f_j}\!\coloneqq\!q_{_j}\!-q_{est_j}$
- Harm×nicos k=1 a m (m ¶ o nßmero de harm×nicos):	
$Q(t,j,k) \coloneqq q_{f_j} \cdot Cr(j,k) \cdot Pp(t,k)$	

	<i>l</i> := 1,26001	
$P1_{l} = Pdin\left(\frac{l-1}{10}, 1\right)$		$P11_{l} = Pdin\left(\frac{l-1}{10}, 11\right)$
$P2_{l} \coloneqq Pdin\left(\frac{l-1}{10},2\right)$		$P12_{l} = Pdin\left(\frac{l-1}{10}, 12\right)$
$P3_{l} \coloneqq Pdin\left(\frac{l-1}{10},3\right)$		$P13_l = Pdin\left(\frac{l-1}{10}, 13\right)$
$P4_{l} \coloneqq Pdin\left(\frac{l-1}{10},4\right)$		$P14_{l} = Pdin\left(\frac{l-1}{10}, 14\right)$
$P5_{l} \coloneqq Pdin\left(\frac{l-1}{10}, 5\right)$		$P15_{l} = Pdin\left(\frac{l-1}{10}, 15\right)$
$P6_{l} = Pdin\left(\frac{l-1}{10}, 6\right)$		$P16_{l} = Pdin\left(\frac{l-1}{10}, 16\right)$
$P7_{l} = Pdin\left(\frac{l-1}{10}, 7\right)$		$P17_{l} = Pdin\left(\frac{l-1}{10}, 17\right)$
$P8_{l} = Pdin\left(\frac{l-1}{10}, 8\right)$		$P18_{l} = Pdin\left(\frac{l-1}{10}, 18\right)$
$P9_{_{l}} = Pdin\left(\frac{l-1}{10}, 9\right)$		$P19_{l} = Pdin\left(\frac{l-1}{10}, 19\right)$
$P10_{l} = Pdin\left(\frac{l-1}{10}, 10\right)$		$P20_{l} = Pdin\left(\frac{l-1}{10}, 20\right)$

$F_{t1} = \max(P1) + Fest_{_1}$	$F_{t1} = 1.029 \cdot 10^3$
$F_{t2} \coloneqq \max(P2) + Fest_2$	$F_{t2} = 2.057 \cdot 10^3$
$F_{t3} \coloneqq \max(P3) + Fest_3$	$F_{t3} = 2.057 \cdot 10^3$
$F_{t4} \coloneqq \max(P4) + Fest_4$	$F_{t4} = 2.057 \cdot 10^3$
$F_{t5} \coloneqq \max(P5) + Fest_5$	$F_{t5} = 1.029 \cdot 10^3$
$F_{t6} \coloneqq \max\left(P6\right) + Fest_6$	$F_{t6} = 1.799 \cdot 10^3$
$F_{t7} \coloneqq \max(P7) + Fest_7$	$F_{t7} = 3.598 \cdot 10^3$
$F_{t8} \coloneqq \max(P8) + Fest_{8}$	$F_{t8} = 3.598 \cdot 10^3$
$F_{t9} \coloneqq \max(P9) + Fest_9$	$F_{t9} = 3.598 \cdot 10^3$
$F_{t10} := \max(P10) + Fest_{10}$	$F_{t10} = 1.799 \cdot 10^3$
$F_{t11} := \max(P11) + Fest_{11}$	$F_{t11} = 1.68 \cdot 10^3$
$F_{t12} := \max(P12) + Fest_{12}$	$F_{t12} \! = \! 3.36 \cdot 10^3$
$F_{t13} := \max(P13) + Fest_{13}$	$F_{t13} \! = \! 3.36 \cdot 10^3$
$F_{t14} = \max(P14) + Fest_{14}$	$F_{t14} = 3.36 \cdot 10^3$
$F_{t15} = \max(P15) + Fest_{15}$	$F_{t15} = 1.68 \cdot 10^3$
$F_{t16} = \max(P16) + Fest_{16}$	$F_{t16} = 1.49 \cdot 10^3$
$F_{t17} = \max(P17) + Fest_{17}$	$F_{t17} = 2.98 \cdot 10^3$
$F_{t18} := \max(P18) + Fest_{18}$	$F_{t18} \! = \! 2.98 \! \cdot \! 10^3$
$F_{t19} := \max(P19) + Fest_{19}$	$F_{t19}\!=\!2.98\!\cdot\!10^3$
$F_{t20} := \max(P20) + Fest_{20}$	$F_{t20} = 1.49 \cdot 10^3$

a) Dados do vento:

- Velocidade B®ica (m/s):

 $V_o = 30$

- Fator Topogr®fico:

 $S_1 = 1.00$

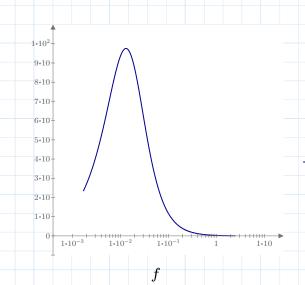
- Fator Estatostico:

- $S_3 = 1.00$
- Velocidade de Projeto (velocidade m¶dia sobre 10 minutos a 10 metros de altura sobre o solo, em terreno de categoria II da NBR 6123), em m/s:

$$V_p \coloneqq 0.69 \cdot V_o \cdot S_1 \cdot S_3$$

$$V_p = 20.7$$

- b) Espectro da Velocidade do vento:
- Frequ ncia de Rajadas (Santos, 2018):


f = 0.0017, 0.0018...2.5

- Frequ, ncia Adimensional:

$$x(f) \coloneqq \frac{1220 \cdot f}{V_p}$$

- Espectro de pot, ncia Davenport (FRANCO, 1993):

$$Sr(f) \coloneqq rac{4 \cdot x(f)^2}{\left(1 + x(f)^2\right)^{\frac{4}{3}}} \cdot f$$

(do M	uencia Fundamental lodo 1 de vibra´² o):			r = 1.0464	3
- Qua	ntidade de nÆs:			$j\!\coloneqq\!1,2\ldots 2^{2}$	1
- Ξrea	de Influ, ncia:	- A	ltura dos nÆs:	- Coeficiente	de Arrasto
	[3.75]		[24]		[1.05]
	7.5		24		$\begin{vmatrix} 1.05 \\ 1.05 \end{vmatrix}$
	3.75		$\begin{bmatrix} 24\\24 \end{bmatrix}$		$\begin{vmatrix} 1.05 \\ 1.05 \end{vmatrix}$
	7.5		$\begin{bmatrix} 21\\21 \end{bmatrix}$		1.05
	15		21		1.05
	7.5		21		1.05
$A_j =$	7.5	z_{j} =	= 18	Ca_{j} =	1.05
Ĵ	15	Ĵ	18	Ĵ	1.05
	7.5		18		1.05
	7.5		15		1.05
	15		15		1.05
	7.5		15		1.05
Nßn	nero de harm×nicos:			k := 1, 21	2
- Fred	juencia Ressonante:			$R \coloneqq 3$	
	odo Ressonante:			$T_R \coloneqq \frac{1}{R}$	
- Perº					
	Juencia para o harm×r	nico "k":		$f_{_{k}}\!\coloneqq\!rac{r}{2^{(k-R)}}$)
- Fred				$egin{aligned} f_k &\coloneqq rac{r}{2^{(k-R)}} \ T_k &\coloneqq rac{1}{f_k} \end{aligned}$)
- Frec - Per ^o	juencia para o harm×r	"k":			

_ '	Val	ores	dos	int	erva	alos	de:	frea	uer	ıcia:
								- 1		

f -	5.92 2.96 1.48 0.74 0.37 0.185	f -	2.96 1.48 0.74 0.37 0.185 0.092
f_{a_k} =	0.092 0.046 0.023 0.012 0.006	f_{p_k} =	0.046 0.023 0.012 0.006 0.003
	[0.003]		[0.001]

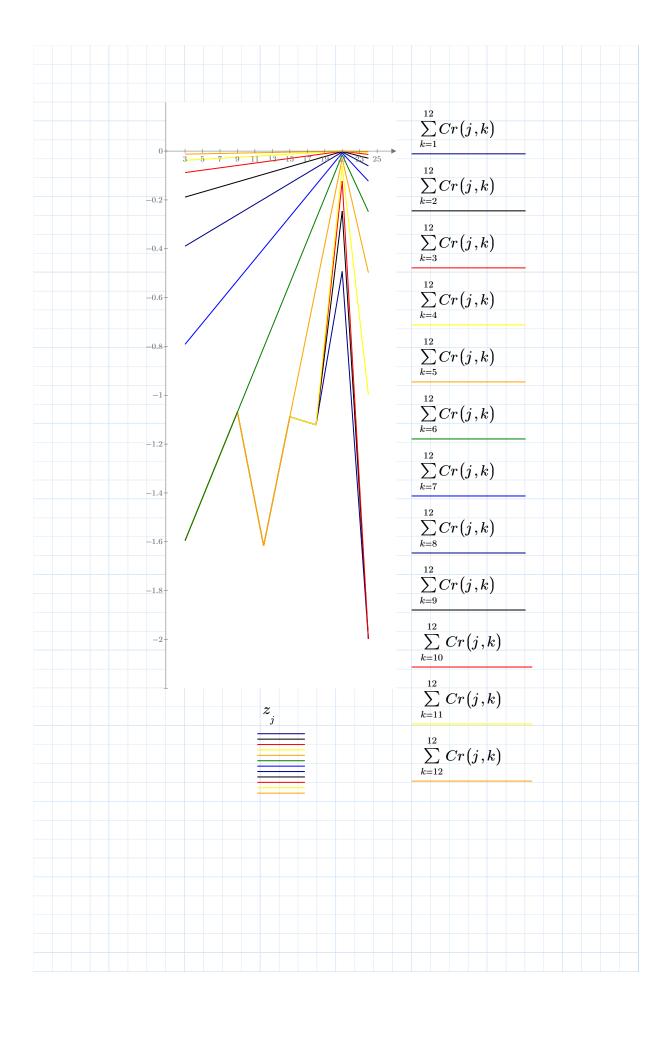
- Par° metro "Ck":

$$egin{aligned} C_k &\coloneqq \sqrt{2 \cdot \int\limits_{f_{p_k}} Sr(f) \, \mathrm{d}f} & c_k &\coloneqq rac{C_k}{\sum\limits_k C_k} \end{aligned}$$

- Gera '2 o de Mhgulos de Fase Aleat Arios:

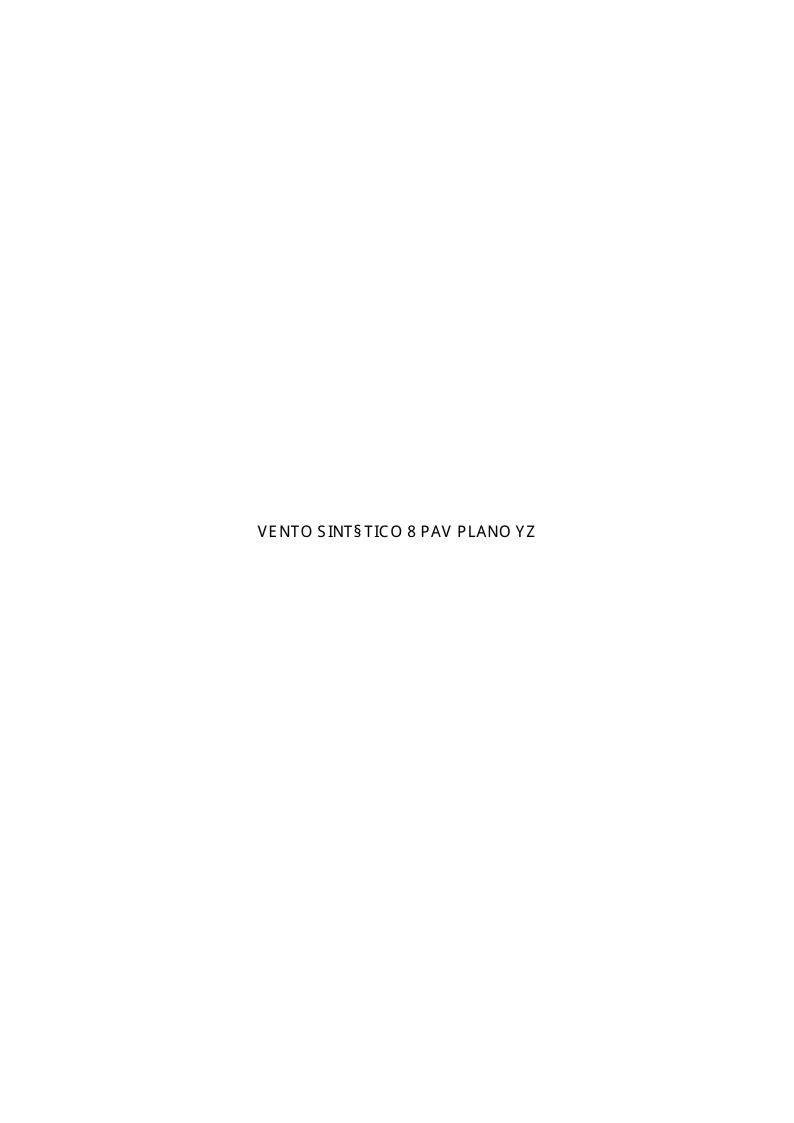
- Tempo:

$$t = 0, 0.1..600$$


- Determina '2 o da Parcela Flutuante:

$$P(t,k) \coloneqq \cos\left(2 \cdot \frac{\pi}{T_R \cdot 2^{k-R}} \cdot t - \theta_k\right)$$

	T				c				c		c
x =	='	k 	$cc \coloneqq c$	cc	:= 	C	c := c	+	R	cc	$:= c + \frac{1}{4}$
k	T_{j}	R	$cc_{\stackrel{\cdot}{k}} = c_{\stackrel{\cdot}{k}}$		R 2		R-1	R – 1	4	R +	+1 $R+1$ 4
T	1		$ \boxed{0.25}$		[0.035]		[0.035]		[4.186]		0.239
	2		0.5		0.059		0.044		2.093		0.478
	3		1		0.028		0.056		1.046		0.956
	4		2		0.085		0.071		0.523		1.911
	5		4		0.089		0.089		0.262		3.823
	6	mm _	8	aa -	0.111		0.111	f_	0.131	T _	7.645
Ŧ	7	$rx_{_{k}}=$	16	$cc_{k} =$	$0.111 \\ 0.135$	$c_{_{k}}$ =	0.135	$f_{_k}$ =	0.065	T_{k} =	15.29
	8		32		0.15		0.15		0.033		30.58
	9		64		0.136		0.136		0.016		61.16
	10		128		0.094		0.094		0.008		122.321
	-1-1		256		0.053		0.053		0.004		244.641
	11	İ	1 = 0 0		0.000		10.0001				
larr	12] n×n	icos co	512]	onforme	[0.027]	ctro ([0.027]		[0.002]		[489.283]
larr	$\begin{bmatrix} 12 \end{bmatrix}$ m×n $t,k)$	icos co):=P($\begin{bmatrix} 512 \end{bmatrix}$ prrigidos c $t,k) \cdot cc_k$		[0.027]	ectro ([0.027]				[489.283]
larr $p(r)$	$\begin{bmatrix} 12 \end{bmatrix}$ m×n $t,k)$	icos co):=P(512]		[0.027]	ectro ([0.027]				
larr Pp(i	$\begin{bmatrix} 12 \end{bmatrix}$ m×n $t,k)$	icos co):=P(ela ´²	$\begin{bmatrix} 512 \end{bmatrix}$ prrigidos c $t,k) \cdot cc_k$	11	[0.027]	ectro ([0.027]			$\Delta z 0$	
larr Pp(r	$\begin{bmatrix} 12 \end{bmatrix}$ m×n $t,k)$	icos co):=P(ela ´²	$egin{bmatrix} 512 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	11	[0.027]	ectro ([0.027]			$\Delta z 0$	$[489.283]$ $k := \frac{V_p}{7 \cdot f_k}$
larr Pp(r	$\begin{bmatrix} 12 \end{bmatrix}$ m×n $t,k)$	icos co):=P(ela ´²	$egin{bmatrix} 512 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	11	[0.027]		[0.027]				
larr Pp(r	$\begin{bmatrix} 12 \end{bmatrix}$ m×n $t,k)$	icos cc):=P(ela ´² nho da	$egin{bmatrix} 512 & igcellet & igcell$	11	[0.027]		do vento:			[1	$v_k \coloneqq rac{{m V}_p}{7 \cdot {m f}_k}$
larr Pp(a	$\begin{bmatrix} 12 \end{bmatrix}$ m×n $t,k)$	icos cc):=P(ela ´² hho da 0.7	$egin{bmatrix} 512 & \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	11	[0.027]		[0.027] do vento: -1.415				$k := \frac{V_p}{7 \cdot f_k}$
larr	$\begin{bmatrix} 12 \end{bmatrix}$ m×n $t,k)$	icos cc):=P(ela ´² o nho da 0.7 1.4	$\begin{bmatrix} 512 \end{bmatrix}$ prrigidos c $t,k) \cdot cc_k$ o Espacia Rajada Eo $\begin{bmatrix} 06 \\ 13 \\ 26 \end{bmatrix}$	11	[0.027]		[0.027] do vento: -1.415 -0.708				$ \begin{array}{c} V_p \\ \hline 7 \cdot f_k \end{array} $ 1.415 0.708
larr	$\begin{bmatrix} 12 \end{bmatrix}$ m×n $t,k)$	icos co):=P(ela ´² nho da 0.7 1.4 2.8	$\begin{bmatrix} 512 \end{bmatrix}$ prrigidos c $t,k) \cdot cc_k$ o Espacia Rajada Eo $\begin{bmatrix} 06 \\ 13 \\ 26 \\ 52 \end{bmatrix}$	11	[0.027]						$ \begin{array}{c c} $
larr $p(z)$	$\begin{bmatrix} 12 \end{bmatrix}$ m×n $t,k)$ Corr	icos cc):=P(rela ´² c nho da 0.7 1.4 2.8 5.6	$\begin{bmatrix} 512 \end{bmatrix}$ prrigidos c $t,k) \cdot cc_k$ o Espacia Rajada Ec $\begin{bmatrix} 06 \\ 13 \\ 26 \\ 52 \\ 04 \end{bmatrix}$	11	[0.027] e o espe		-1.415 -0.708 -0.354 -0.177				$ \begin{array}{c} $
larr Pp(r	$\begin{bmatrix} 12 \end{bmatrix}$ m×n $t,k)$ Corr	icos co):=P(ela ´² mho da 0.7 1.4 2.8 5.6 11.3 22.6 45.2	$\begin{bmatrix} 512 \end{bmatrix}$ prrigidos c $t,k) \cdot cc_k$ o Espacia Rajada Ec 06 13 26 52 04 07 15	11	[0.027] e o espe		-1.415 -0.708 -0.354 -0.177 -0.088 -0.044 -0.022		[0.002]		$\begin{array}{c} V_p \\ \overline{7 \cdot f_k} \\ 1.415 \\ 0.708 \\ 0.354 \\ 0.177 \\ 0.088 \end{array}$
larr P(1) Tai	$\begin{bmatrix} 12 \end{bmatrix}$ m×n $t,k)$ Corr	icos co):=P(ela '2 nho da 0.7 1.4 2.8 5.6 11.3 22.6 45.2 90.4	$\begin{bmatrix} 512 \end{bmatrix}$ prrigidos c $t,k) \cdot cc_k$ o Espacia Rajada Ec 06 13 26 52 04 07 15	11	e o espe		-1.415 -0.708 -0.354 -0.177 -0.088 -0.044 -0.022 -0.011				$ \begin{array}{l} \vdots = \frac{V_p}{7 \cdot f_k} \\ \vdots = \frac{V_p}{7 \cdot f_k} \\ \vdots = \frac{V_p}{1.415} \\ \vdots = \frac{V_p}{1.4$
larr P(1) Tai	$\begin{bmatrix} 12 \end{bmatrix}$ m×n $t,k)$ Corr	icos co $P($ = $P($ ela $^{'2}$ hho da $^{'2}$ 1.4 2.8 5.6 11.3 22.6 45.2 90.4 180.8	$\begin{bmatrix} 512 \end{bmatrix}$ prrigidos c $t,k) \cdot cc_k$ o Espacia Rajada Ec 06 13 26 52 04 07 15 3 6	11	[0.027] e o espe		-1.415 -0.708 -0.354 -0.177 -0.088 -0.044 -0.022 -0.011 -0.006			$\frac{1}{0}$	$ \begin{array}{c} $
larr P(1) Tai	$\begin{bmatrix} 12 \end{bmatrix}$ m×n $t,k)$ Corr	icos co):=P(ela '2 mho da 0.7 1.4 2.8 5.6 11.3 22.6 45.2 90.4 180.8 361.7	$\begin{bmatrix} 512 \end{bmatrix}$ prrigidos c $t,k) \cdot cc_k$ o Espacia Rajada Ec 06 13 26 52 04 07 15 3 6 2	11	[0.027] e o espe		-1.415 -0.708 -0.354 -0.177 -0.088 -0.044 -0.022 -0.011 -0.006 -0.003				$\begin{array}{c} I_k \coloneqq \frac{V_p}{7 \cdot f_k} \\ 1.415 \\ 0.708 \\ 0.354 \\ 0.177 \\ 0.088 \\ 0.044 \\ 0.022 \\ 0.011 \\ 0.006 \\ 0.003 \end{array}$
larr P(1) Tai	$\begin{bmatrix} 12 \end{bmatrix}$ m×n $t,k)$ Corr	icos co):=P(ela '2 nho da 0.7 1.4 2.8 5.6 11.3 22.6 45.2 90.4 180.8 361.7 723.4	$\begin{bmatrix} 512 \end{bmatrix}$ prrigidos c $t,k) \cdot cc_k$ o Espacia Rajada Ec 06 13 26 52 04 07 15 3 6 2	11	[0.027] e o espe		-1.415 -0.708 -0.354 -0.177 -0.088 -0.044 -0.022 -0.011 -0.006				$ \begin{array}{c} $


Centro de Rajada:

$Cr(j,k)\!\coloneqq\!\operatorname{if} G_c\!\leq\! z_j\!\leq\! G_c\!+\!\Delta z 0_k$	
$egin{aligned} & \left\ rac{1}{\Delta z 0_k} ullet \left(G_c - z_j ight) \ & ext{else if } G_c - \Delta z 0_k \! \leq \! z_j \! \leq \! G \end{aligned}$	
	G_c
$\left\ rac{-1}{\Delta z 0_k}{m \cdot}\left(G_c{-z_j} ight)$	
e) Harm×nico de for´as nos nÆs:	
- Velocidade M¶dia (600s):	$Vm_{j}\!\coloneqq\!0.5934\!\cdot\!V_{o}\!\cdot\!\left(\!rac{z_{j}}{10}\! ight)^{\!0.185}$
- Velocidade de Pico (3s):	$V_{j} \coloneqq 0.94 \cdot V_{o} \cdot \left(\frac{z_{j}}{10}\right)^{0.1}$
- Press² o de Pico:	$q_{j} \coloneqq 0.613 \cdot \left(V_{j}\right)^{2}$
- Carregamento Est®tico:	$q_{est_j} \coloneqq 0.613 \cdot \left(Vm_j\right)^2$
	$Fest_{j} \coloneqq A_{j} \cdot Ca_{j} \cdot q_{est_{j}}$
- Press² o Flutuante:	$q_{f_j}\!\coloneqq\!q_{_j}\!-q_{est_j}$
- Harm×nicos k= 1 a m (m ¶ o nßmero de harm×nicos):	
$Q(t,j,k) \coloneqq q_{f_j} \boldsymbol{\cdot} Cr(j,k) \boldsymbol{\cdot} Pp(t,k)$	
$Ff(t,j,k) \coloneqq Ca_{j} \cdot A_{j} \cdot Q(t,j,k)$	
$Pdin(t,j) \coloneqq \sum_{k} Ff(t,j,k)$	

	l := 1, 2 6001
$P1_{l} = Pdin\left(\frac{l-1}{10}, 1\right)$	$P7_{l} \coloneqq Pdin\left(\frac{l-1}{10},7\right)$
$P2_{l} = Pdin\left(\frac{l-1}{10}, 2\right)$	$P8_{l} = Pdin\left(\frac{l-1}{10}, 8\right)$
$P3_{l} = Pdin\left(\frac{l-1}{10}, 3\right)$	$P9_{l} = Pdin\left(\frac{l-1}{10}, 9\right)$
$P4_{l} = Pdin\left(\frac{l-1}{10}, 4\right)$	$P10_{l} \coloneqq Pdin \left(\frac{l-1}{10}, 10 \right)$
$P5_{l} = Pdin\left(\frac{l-1}{10}, 5\right)$	$P11_{l} = Pdin\left(\frac{l-1}{10}, 11\right)$
$P6_{l} = Pdin\left(\frac{l-1}{10}, 6\right)$	$P12_{l} \!\coloneqq\! Pdin\!\left(\!\frac{l\!-\!1}{10},12\right)$
$P13_{l} = Pdin\left(\frac{l-1}{10}, 13\right)$	$P19_{l} \coloneqq Pdin\left(\frac{l-1}{10}, 19\right)$
$P14_{l} = Pdin\left(\frac{l-1}{10}, 14\right)$	$P20_{l}\!\coloneqq\!Pdin\!\left(\!\frac{l\!-\!1}{10},20\right)$
$P15_{l} = Pdin\left(\frac{l-1}{10}, 15\right)$	$P21_{l}\!\coloneqq\!Pdin\!\left(\!\frac{l\!-\!1}{10},21\right)$
$P16_{l} = Pdin\left(\frac{l-1}{10}, 16\right)$	$P22_{l} \coloneqq Pdin\left(\frac{l-1}{10},22\right)$
$P17_{l} = Pdin\left(\frac{l-1}{10}, 17\right)$	$P23_{l} \!\coloneqq\! Pdin\!\left(\!\frac{l-1}{10},23\right)$
$P18_{l} = Pdin\left(\frac{l-1}{10}, 18\right)$	$P24_{l}\!\coloneqq\!Pdin\!\left(\!\frac{l\!-\!1}{10},24\right)$

$F_{t1} \coloneqq \max(P1) + Fest_{1}$	$F_{t1} = 1.156 \cdot 10^3$
$F_{t2} \coloneqq \max(P2) + Fest_{2}$	$F_{t2} = 2.311 \cdot 10^3$
$F_{t3} \coloneqq \max(P3) + Fest_3$	$F_{t3} = 1.156 \cdot 10^3$
$F_{t4} \coloneqq \max(P4) + Fest_4$	$F_{t4}\!=\!2.056\!\cdot\!10^3$
$F_{t5} \coloneqq \max(P5) + Fest_5$	$F_{t5}\!=\!4.112\!\cdot\!10^3$
$F_{t6} \coloneqq \max\left(P6\right) + Fest_{6}$	$F_{t6} \!=\! 2.056 \! \cdot \! 10^3$
$F_{t7} \coloneqq \max(P7) + Fest_{7}$	$F_{t7} = 2.127 \cdot 10^3$
$F_{t8} \coloneqq \max(P8) + Fest_8$	$F_{t8} = 4.253 \cdot 10^3$
$F_{t9} \coloneqq \max(P9) + Fest_{9}$	$F_{t9} = 2.127 \cdot 10^3$
$F_{t10} \coloneqq \max\left(P10\right) + Fest_{_{10}}$	$F_{t10} \!=\! 2.017 \! \cdot \! 10^3$
$F_{t11} \coloneqq \max\left(P11\right) + Fest_{_{11}}$	$F_{t11} \!=\! 4.033 \! \cdot \! 10^3$
$F_{t12} \coloneqq \max\left(P12\right) + Fest_{_{12}}$	$F_{t12} = 2.017 \cdot 10^3$
$F_{t13} \coloneqq \max\left(P13\right) + Fest_{13}$	$F_{t13} = 1.986 \cdot 10^3$
$F_{t14} \coloneqq \max\left(P14\right) + Fest_{_{14}}$	$F_{t14} = 3.972 \cdot 10^3$
$F_{t15} \coloneqq \max\left(P15\right) + Fest_{15}$	$F_{t15} = 1.986 \cdot 10^3$
$F_{t16} \coloneqq \max\left(P16\right) + Fest_{16}$	$F_{t16} = 1.705 \cdot 10^3$
$F_{t17} \coloneqq \max\left(P17\right) + Fest_{17}$	$F_{t17} = 3.41 \cdot 10^3$
$F_{t18} \coloneqq \max\left(P18\right) + Fest_{18}$	$F_{t18} \! = \! 1.705 \! \cdot \! 10^3$
$F_{t19} = \max(P19) + Fest_{19}$	$F_{t19} \! = \! 1.546 \cdot \! 10^3$
$F_{t20} \coloneqq \max\left(P20\right) + Fest_{20}$	$F_{t20} = 3.093 \cdot 10^3$
$F_{t21} \coloneqq \max\left(P21\right) + Fest_{21}$	$F_{t21} = 1.546 \cdot 10^3$
$F_{t22} \coloneqq \max\left(P22\right) + Fest_{22}$	$F_{t22} = 1.291 \cdot 10^3$
$F_{t23} \coloneqq \max\left(P23\right) + Fest_{23}$	$F_{t23} = 2.581 \cdot 10^3$
$F_{t24} \coloneqq \max\left(P24\right) + Fest_{24}$	$F_{t24} = 1.291 \cdot 10^3$

a) Dados do vento:

- Velocidade B®ica (m/s):

 $V_o = 30$

- Fator Topogr®fico:

 $S_1 = 1.00$

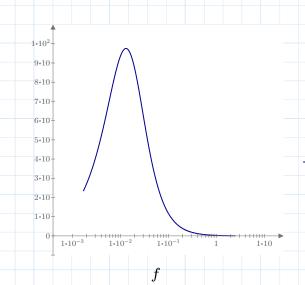
- Fator Estat^ostico:

- $S_3 = 1.00$
- Velocidade de Projeto (velocidade m¶dia sobre 10 minutos a 10 metros de altura sobre o solo, em terreno de categoria II da NBR 6123), em m/s:

$$V_p \coloneqq 0.69 \cdot V_o \cdot S_1 \cdot S_3$$

$$V_p = 20.7$$

- b) Espectro da Velocidade do vento:
- Frequ ncia de Rajadas (Santos, 2018):


f = 0.0017, 0.0018...2.5

- Frequ, ncia Adimensional:

$$x(f) \coloneqq \frac{1220 \cdot f}{V_p}$$

- Espectro de pot, ncia Davenport (FRANCO, 1993):

$$Sr(f) \coloneqq rac{4 \cdot x(f)^2}{\left(1 + x(f)^2\right)^{\frac{4}{3}}} \cdot f$$

- Frequ	uencia Fundamental odo 1 de vibra´²o):			r = 1.04643	:
- Quan	tidade de nÆs:			j := 1, 240	
- Ξrea	de Influ, ncia:	- Altur	a dos nÆs:	- Coeficiente d	le Arrasto
	[3.75]		[24]		[1.3]
	7.5		24		1.3
	7.5		24		1.3
	7.5		24		1.3
	3.75		24		1.3
	7.5		21		1.3
	15		21		1.3
	15		21		1.3
	15		21		1.3
4	7.5		21		1.3
$A_{j} =$	7.5	z_{j} =	18	Ca_{j} =	1.3
	15 15		18 18		1.3
	15		18		1.3
	7.5		18		1.3
	7.5		15		1.3
	15		15		1.3
	15		15		1.3
	15		15		1.3
	7.5		15		1.3
d) Ded	composi´² o das pres	ssÞes flutuant	es:		
- Nßme	ero de harm×nicos:			k = 1, 212	,
- Frequ	uencia Ressonante:			$R \coloneqq 3$	
- Per⁰o	do Ressonante:			$T_R \coloneqq \frac{1}{R}$	
- Fregi	uencia para o harm×nio	-o "k":		f_{k} := $rac{r}{2^{(k-R)}}$	
				$\frac{3}{k}$ $2^{(k-R)}$	
Dar ⁰ a	do para o harm×nico '	ıı ,		$T_{k} = \frac{1}{f_{k}}$	
1 61 0	uo para o namin'ilico	Λ.		1	

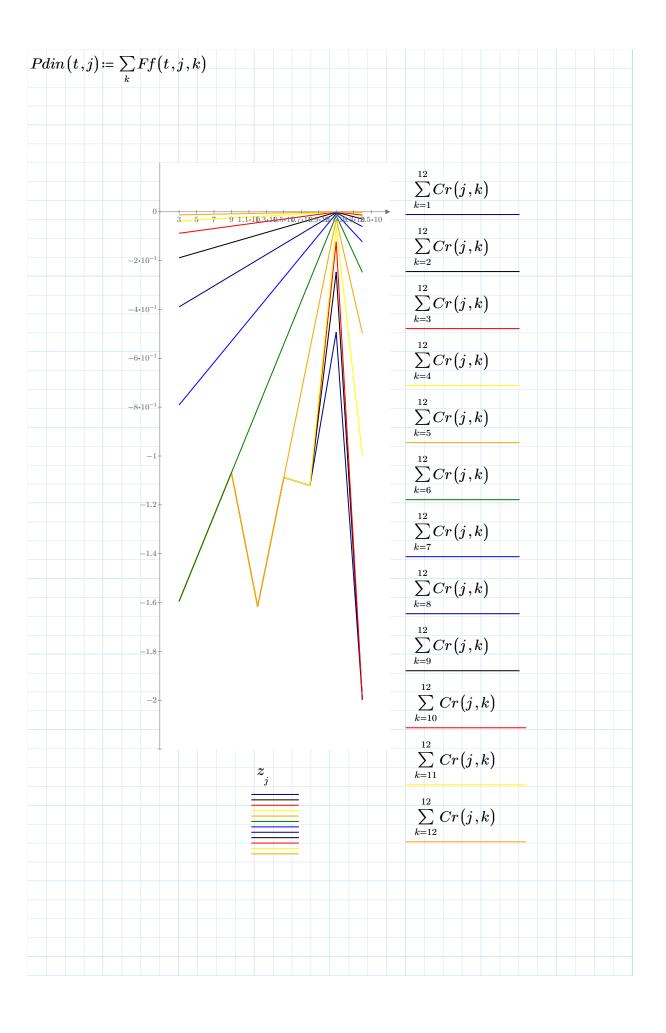
- Intervalos de frequencias:	
${f_{a_k}} \! \coloneqq \! rac{r}{2^{(k-0.5-R)}}$	${f_p}_k\!\coloneqq\!rac{r}{2^{(k+0.5-R)}}$
$2^{(k-0.5-R)}$	$2^{(k+0.5-R)}$
- Valores dos intervalos de freque	ncia:
[5.92]	[2.96]
2.96	1.48
1.48	0.74
0.74	0.37
0.37	0.185
$f_{a_k} = \begin{vmatrix} 0.185 \\ 0.092 \end{vmatrix}$	$f_{p_k} = egin{bmatrix} 0.092 \ 0.046 \end{bmatrix}$
$\begin{bmatrix} 0.092 \\ 0.046 \end{bmatrix}$	
	0.023
0.023	0.012
0.012	0.006
0.006	0.003
[0.003]	[0.001]
- Par° metro "Ck":	
f	
	C_{k}
$C_k \coloneqq \sqrt{2 \cdot \int\limits_{f_{p_k}}^{f_{a_k}} Sr(f) \mathrm{d}f} \qquad \qquad c_k$	$:=rac{C_k}{\sum\limits_k C_k}$
$egin{array}{cccccccccccccccccccccccccccccccccccc$	Σc
,	
- Gera´² o de Mngulos de Fase Ale	atÆrios:
	$\theta_k = \operatorname{rnd}(2 \cdot \pi)$
	[5.965]
	3.453
	2.964
	5.322
	2.866
	0.170
	$\theta_k = \begin{vmatrix} 6.176 \\ 4.644 \end{vmatrix}$
	$\begin{vmatrix} 1.044 \\ 1.232 \end{vmatrix}$
	5.274
	3.147
	0.173
	$\lfloor 3.598 \rfloor$
- Tempo:	t = 0, 0.1600
1.	

- Determina 2 o da Parcela Flutuante:

$$P(t,k) \coloneqq \cos\left(2 \cdot \frac{\pi}{T_R \cdot 2^{k-R}} \cdot t - \theta_k\right)$$

- Corre 'Pes sugeridas por FRANCO (1993):

		0.25		0.035		[0.035]		4.186		[0.239]
2		0.5		0.059		0.044		2.093		0.478
3		1		0.028		0.056		1.046		0.956
4		2		0.085		0.071		0.523		1.911
5		4		0.089		0.089		0.262		3.823
$k = \begin{bmatrix} 6 \end{bmatrix}$	rx =	8	cc =	0.111	c =	0.111	f _	0.131	T =	7.645
7 - 7	k - k	16	k	0.135	k	0.135	J_k	0.065	$\frac{1}{k}$	15.29
8		32		0.15		0.15		0.033		30.58
9		64		0.136		0.136		0.016		61.16
10		128		0.094		0.094		0.008		122.321
11		256		0.053		0.053		0.004		244.641
$\lfloor 12 \rfloor$	Ĺ	512		$\lfloor 0.027 \rfloor$		[0.027]		0.002		[489.283]


Harm×nicos corrigidos conforme o espectro do vento:

$$Pp(t,k) = P(t,k) \cdot cc_k$$

e) Correla '2 o Espacial

 $\Delta z 0_k \coloneqq rac{V_p}{7 \cdot f_k}$

Correla´² o Triangular:	$L_{k} \coloneqq 2 \cdot \Delta z 0_{k}$
Centro de Rajada: $G_c \coloneqq z_1 - \frac{L_R}{2} = 21.174$	
$Cr(j,k) \coloneqq ext{if } G_c \leq z_j \leq G_c + \Delta z 0_k$	
$egin{aligned} & rac{1}{\Delta z 0_k} \cdot \left(G_c - z_j ight) \ & ext{else if } G_c - \Delta z 0_k \leq z_j \leq G \end{aligned}$	
$\left\ rac{-1}{\Delta z 0_k} \cdot \left(G_c - z_j ight) ight.$	
$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	
e) Harm×nico de for´as nos nÆs:	
- Velocidade M¶dia (600s):	$Vm_{j} = 0.5934 \cdot V_{o} \cdot \left(\frac{z_{j}}{10}\right)^{0.185}$
- Velocidade de Pico (3s):	$V_{j} \coloneqq 0.94 \cdot V_{o} \cdot \left(\frac{z_{j}}{10}\right)^{0.1}$
- Press² o de Pico:	$q_{_{j}} = 0.613 \cdot \left(V_{_{j}}\right)^{2}$
- Carregamento Est®ico:	$q_{est_j} \coloneqq 0.613 \cdot \left(Vm_j\right)^2$
	$Fest_{j} \coloneqq A_{j} \cdot Ca_{j} \cdot q_{est_{j}}$
- Press² o Flutuante:	$q_{f_j}\!\coloneqq\!q_j-q_{est_j}$
- Harm×nicos k= 1 a m (m ¶ o nßmero de harm×nicos):	
$Q(t,j,k) \coloneqq q_{f_j} \cdot Cr(j,k) \cdot Pp(t,k)$	
$Ff(t,j,k) \coloneqq Ca_{j} \cdot A_{j} \cdot Q(t,j,k)$	

	<i>l</i> := 1,26001	
$P1_{l} = Pdin\left(\frac{l-1}{10}, 1\right)$		$P11_{l} = Pdin\left(\frac{l-1}{10}, 11\right)$
$P2_{l} \coloneqq Pdin\left(\frac{l-1}{10},2\right)$		$P12_{l} = Pdin\left(\frac{l-1}{10}, 12\right)$
$P3_{l} \coloneqq Pdin\left(\frac{l-1}{10},3\right)$		$P13_l = Pdin\left(\frac{l-1}{10}, 13\right)$
$P4_{l} \coloneqq Pdin\left(\frac{l-1}{10},4\right)$		$P14_{l} = Pdin\left(\frac{l-1}{10}, 14\right)$
$P5_{l} \coloneqq Pdin\left(\frac{l-1}{10}, 5\right)$		$P15_{l} = Pdin\left(\frac{l-1}{10}, 15\right)$
$P6_{l} = Pdin\left(\frac{l-1}{10}, 6\right)$		$P16_{l} = Pdin\left(\frac{l-1}{10}, 16\right)$
$P7_{l} = Pdin\left(\frac{l-1}{10}, 7\right)$		$P17_{l} = Pdin\left(\frac{l-1}{10}, 17\right)$
$P8_{l} = Pdin\left(\frac{l-1}{10}, 8\right)$		$P18_{l} = Pdin\left(\frac{l-1}{10}, 18\right)$
$P9_{_{l}} = Pdin\left(\frac{l-1}{10}, 9\right)$		$P19_{l} = Pdin\left(\frac{l-1}{10}, 19\right)$
$P10_{l} = Pdin\left(\frac{l-1}{10}, 10\right)$		$P20_{l} = Pdin\left(\frac{l-1}{10}, 20\right)$

$P21_{l} = Pdin\left(\frac{l-1}{10}, 21\right)$	$P31_{_{l}} \!\!\coloneqq\! Pdin\!\left(\!\frac{l\!-\!1}{10},31\right)$
$P22_{l} = Pdin\left(\frac{l-1}{10}, 22\right)$	$P32_{l} = Pdin\left(\frac{l-1}{10}, 32\right)$
$P23_{l} = Pdin\left(\frac{l-1}{10}, 23\right)$	$P33_{l} \coloneqq Pdin\left(\frac{l-1}{10}, 33\right)$
$P24_{l} = Pdin\left(\frac{l-1}{10}, 24\right)$	$P34_{l} = Pdin\left(\frac{l-1}{10}, 34\right)$
$P25_{l} \coloneqq Pdin\left(\frac{l-1}{10}, 25\right)$	$P35_{_{l}} \!\!\coloneqq\! Pdin\!\left(\!\frac{l\!-\!1}{10},35\right)$
$P26_{l} = Pdin\left(\frac{l-1}{10}, 26\right)$	$P36_{l} \coloneqq Pdin\left(\frac{l-1}{10}, 36\right)$
$P27_{l} = Pdin\left(\frac{l-1}{10}, 27\right)$	$P37_{l} \coloneqq Pdin\left(\frac{l-1}{10}, 37\right)$
$P28_{l} = Pdin\left(\frac{l-1}{10}, 28\right)$	$P38_{l} \coloneqq Pdin\left(\frac{l-1}{10}, 38\right)$
$P29_{l} = Pdin\left(\frac{l-1}{10}, 29\right)$	$P39_{l} = Pdin\left(\frac{l-1}{10}, 39\right)$
$P30_{l} = Pdin\left(\frac{l-1}{10}, 30\right)$	$P40_{_{l}} = Pdin\left(\frac{l-1}{10}, 40\right)$

$F_{t1} \coloneqq \max(P1) + Fest_{1}$	$F_{t1} = 1.431 \cdot 10^3$
$F_{t2} \coloneqq \max(P2) + Fest_2$	$F_{t2} = 2.862 \cdot 10^3$
$F_{t3} \coloneqq \max(P3) + Fest_3$	$F_{t3} = 2.862 \cdot 10^3$
$F_{t4} \coloneqq \max(P4) + Fest_{4}$	$F_{t4} = 2.862 \cdot 10^3$
$F_{t5} \coloneqq \max(P5) + Fest_{5}$	$F_{t5} = 1.431 \cdot 10^3$
$F_{t6} \coloneqq \max(P6) + Fest_{6}$	$F_{t6}\!=\!2.546\!\cdot\!10^3$
$F_{t7} \coloneqq \max(P7) + Fest_{_{7}}$	$F_{t7} = 5.091 \cdot 10^3$
$F_{t8} \coloneqq \max(P8) + Fest_{8}$	$F_{t8}\!=\!5.091\!\cdot\!10^3$
$F_{t9} \coloneqq \max(P9) + Fest_{9}$	$F_{t9}\!=\!5.091\cdot 10^3$
$F_{t10} := \max(P10) + Fest_{10}$	$F_{t10}\!=\!2.546\!\cdot\!10^3$
$F_{t11} := \max(P11) + Fest_{11}$	$F_{t11} \!=\! 2.633 \! \cdot \! 10^3$
$F_{t12} = \max(P12) + Fest_{12}$	$F_{t12} = 5.266 \cdot 10^3$
$F_{t13} = \max(P13) + Fest_{13}$	$F_{t13} = 5.266 \cdot 10^3$
$F_{t14} = \max(P14) + Fest_{14}$	$F_{t14} = 5.266 \cdot 10^3$
$F_{t15} = \max(P15) + Fest_{15}$	$F_{t15} = 2.633 \cdot 10^3$
$F_{t16} \coloneqq \max\left(P16\right) + Fest_{16}$	$F_{t16}\!=\!2.497\!\cdot\!10^3$
$F_{t17} \coloneqq \max\left(P17\right) + Fest_{17}$	$F_{t17} = 4.993 \cdot 10^3$
$F_{t18} := \max(P18) + Fest_{18}$	$F_{t18}\!=\!4.993\!\cdot\!10^3$
$F_{t19} := \max(P19) + Fest_{19}$	$F_{t19}\!=\!4.993\!\cdot\!10^3$
$F_{t20} \coloneqq \max\left(P20\right) + Fest_{20}$	$F_{t20} = 2.497 \cdot 10^3$
$F_{t21} \coloneqq \max\left(P21\right) + Fest_{21}$	$F_{t21} = 2.459 \cdot 10^3$
$F_{t22} \coloneqq \max\left(P22\right) + Fest_{22}$	$F_{t22} = 4.917 \cdot 10^3$
$F_{t23} \coloneqq \max\left(P23\right) + Fest_{23}$	$F_{t23} \!=\! 4.917 \! \cdot \! 10^3$
$F_{t24} = \max(P24) + Fest_{24}$	$F_{t24} \!=\! 4.917 \! \cdot \! 10^3$

$F_{t25} = \max(P25) + Fest_{25}$	$F_{t25} = 2.459 \cdot 10^3$
$F_{t26} = \max(P26) + Fest_{26}$	$F_{t26}\!=\!2.111\!\cdot\!10^3$
$F_{t27} = \max(P27) + Fest_{27}$	$F_{t27}\!=\!4.222\!\cdot\!10^3$
$F_{t28} := \max(P28) + Fest_{28}$	$F_{t28}\!=\!4.222\!\cdot\!10^3$
$F_{t29} := \max(P29) + Fest_{29}$	$F_{t29} = 4.222 \cdot 10^3$
$F_{t30} := \max(P30) + Fest_{30}$	$F_{t30} = 2.111 \cdot 10^3$
$F_{t31} := \max(P31) + Fest_{31}$	$F_{t31} = 1.915 \cdot 10^3$
$F_{t32} := \max(P32) + Fest_{32}$	$F_{t32} = 3.829 \cdot 10^3$
$F_{t33} := \max(P33) + Fest_{33}$	$F_{t33} = 3.829 \cdot 10^3$
$F_{t34} := \max(P34) + Fest_{34}$	$F_{t34} = 3.829 \cdot 10^3$
$F_{t35} = \max(P35) + Fest_{35}$	$F_{t35} = 1.915 \cdot 10^3$
$F_{t36} = \max(P36) + Fest_{36}$	$F_{t36} = 1.598 \cdot 10^3$
$F_{t37} = \max(P37) + Fest_{37}$	$F_{t37} = 3.196 \cdot 10^3$
$F_{t38} := \max(P38) + Fest_{38}$	$F_{t38} = 3.196 \cdot 10^3$
$F_{t39} := \max(P39) + Fest_{39}$	$F_{t39} = 3.196 \cdot 10^3$
$F_{t40} = \max(P40) + Fest_{40}$	$F_{t40} \! = \! 1.598 \cdot 10^3$

	$[1.309 \cdot 10^3]$
	1.309 • 10
	$2.619 \cdot 10^3$
	$2.619 \cdot 10^3$
	$2.619 \cdot 10^{3}$
	$1.309 \cdot 10^{3}$
	$2.492 \cdot 10^{3}$
	$4.985 \cdot 10^{3}$
	$4.985 \cdot 10^3$
	$4.985 \cdot 10^3$
	$2.492 \cdot 10^3$
	$2.354 \cdot 10^3$
	$4.709 \cdot 10^3$
	$4.709 \cdot 10^3$
	$4.709 \cdot 10^3$
	$2.354 \cdot 10^3$
	$2.201 \cdot 10^3$
	$ 4.401 \cdot 10^3 $
	$4.401 \cdot 10^3$
	$ 4.401 \cdot 10^3 $
Fest =	$2.201 \cdot 10^3$
rest =	$2.026 \cdot 10^3$
	$4.053 \cdot 10^3$
	$4.053 \cdot 10^3$
	$4.053 \cdot 10^3$
	$2.026 \cdot 10^3$
	$1.822 \cdot 10^3$
	$3.643 \cdot 10^{3}$
	$3.643 \cdot 10^3$
	$3.643 \cdot 10^{3}$
	$1.822 \cdot 10^3$
	$1.568 \cdot 10^{3}$
	$3.136 \cdot 10^3$
	$3.136 \cdot 10^3$
	$3.136 \cdot 10^3$
	$1.568 \cdot 10^3$
	$1.213 \cdot 10^3$
	$2.426 \cdot 10^3$
	$2.426 \cdot 10^{3}$
	$2.426 \cdot 10^{3}$
	$\begin{bmatrix} 2.420 & 10 \\ 1.213 \cdot 10^3 \end{bmatrix}$

a) Dados do vento:

- Velocidade B®ica (m/s):

 $V_o = 30$

- Fator Topogr®fico:

 $S_1 = 1.00$

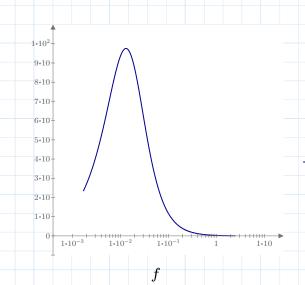
- Fator Estat^ostico:

- $S_3 = 1.00$
- Velocidade de Projeto (velocidade m¶dia sobre 10 minutos a 10 metros de altura sobre o solo, em terreno de categoria II da NBR 6123), em m/s:

$$V_p \coloneqq 0.69 \cdot V_o \cdot S_1 \cdot S_3$$

$$V_p = 20.7$$

- b) Espectro da Velocidade do vento:
- Frequ ncia de Rajadas (Santos, 2018):


f = 0.0017, 0.0018...2.5

- Frequ, ncia Adimensional:

$$x(f) \coloneqq \frac{1220 \cdot f}{V_p}$$

- Espectro de pot, ncia Davenport (FRANCO, 1993):

$$Sr(f) \coloneqq rac{4 \cdot x(f)^2}{\left(1 + x(f)^2\right)^{\frac{4}{3}}} \cdot f$$

c) Parametros da Edifica´² o:				
- Frequencia Fundamental				
(do Modo 1 de vibra´² o):				r = 0.74428
- Quantidade de nÆs:				j := 1, 236
- Ξrea de Influ¸ ncia:	- Altur	a dos nÆs:	_	Coeficiente de Arrasto:
[3.75] 7.5		[36] 36]		[1.11] 1.11
3.75		$\begin{vmatrix} 36 \\ 36 \end{vmatrix}$		1.11
7.5		33		1.11
15		33		1.11
7.5		33		1.11
$A = \begin{bmatrix} 7.5 \end{bmatrix}$	$z_{j}^{}$	30		$Ca = \begin{bmatrix} 1.11 \end{bmatrix}$
³ 15	Ĵ	30		$\frac{j}{j}$ 1.11
7.5		30		1.11
7.5		27		1.11
15		27		1.11
7.5		27		1.11
<u> </u>				
d) Decomposi´² o das pressÞes	flutuani	tes:		
- Nßmero de harm×nicos:				k := 1, 2 12
- Frequencia Ressonante:				R := 3
- Per⁰odo Ressonante:				$T_R = \frac{1}{R}$
- Frequencia para o harm×nico "k":				$f_{k} = \frac{r}{2^{(k-R)}}$
- Perºodo para o harm×nico "k":				$T_k = \frac{1}{f_k}$
- Intervalos de frequencias:				
$f_{a_k}\!\coloneqq\!rac{r}{2^{(k-0.5-R)}}$			$f_{p_k} \coloneqq {2}$	$r \over (k+0.5-R)$

- Valores d	os int	erval	os de	freq	uen	cia:
		[4.21]	1			

$$f_{a_k} = \begin{pmatrix} 4.21 \\ 2.105 \\ 1.053 \\ 0.526 \\ 0.263 \\ 0.066 \\ 0.033 \\ 0.016 \\ 0.008 \\ 0.004 \\ 0.002 \\ \end{pmatrix}$$

$$f_{p_k} = \begin{bmatrix} 2.105 \\ 1.053 \\ 0.526 \\ 0.263 \\ 0.132 \\ 0.066 \\ 0.033 \\ 0.016 \\ 0.008 \\ 0.004 \\ 0.002 \\ 0.001 \end{bmatrix}$$

- Par° metro "Ck":

$$C_k \coloneqq \sqrt{2 \cdot \int\limits_{f_{p_k}}^{f_{a_k}} Sr(f) \, \mathrm{d}f}$$

- Gera '2 o de Mhgulos de Fase AleatÆrios:

 $c_{k} \coloneqq \frac{C_{k}}{\sum_{k} C_{k}}$

$$\theta_{k} \coloneqq \operatorname{rnd}(2 \cdot \pi)$$

$$\begin{bmatrix} 5.417 \\ 4.899 \\ 6.263 \\ 3.842 \\ 1.673 \\ \end{bmatrix}$$

$$\theta_{k} = \begin{bmatrix} 5.279 \\ 2.362 \\ 4.255 \\ 0.055 \\ 1.733 \\ 3.694 \\ 5.263 \end{bmatrix}$$

- Tempo:

$$t = 0, 0.1..600$$

- Determina ² o da Parcela Flutuante:

$$P(t,k) \coloneqq \cos\left(2 \cdot \frac{\pi}{T_R \cdot 2^{k-R}} \cdot t - \theta_k\right)$$

- Corre 'Pes sugeridas por FRANCO (1993):

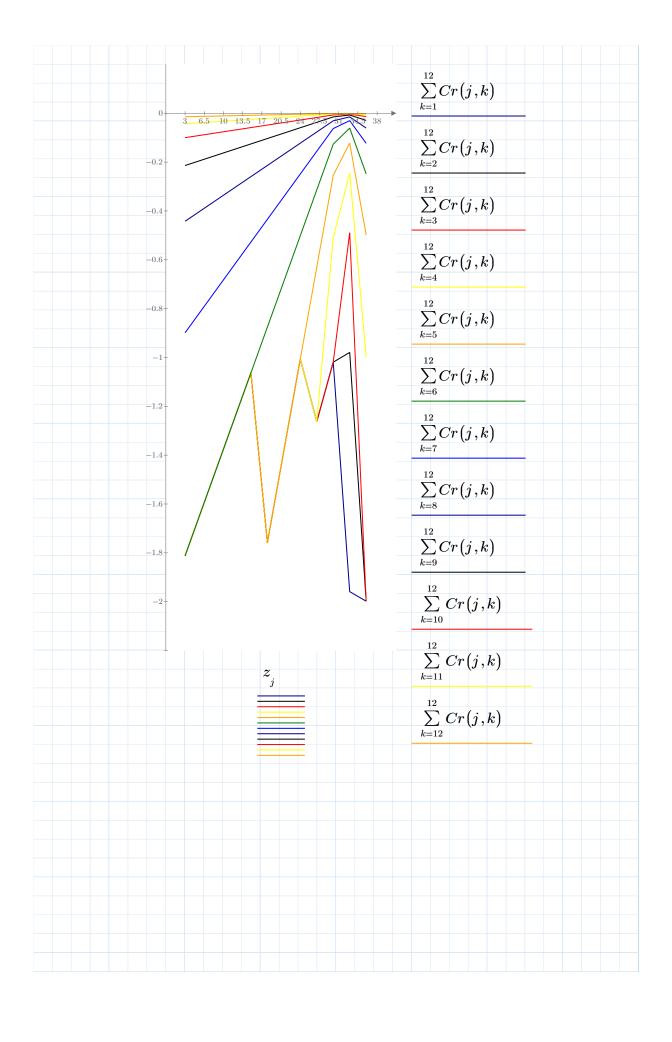
$rx_{k} \coloneqq \frac{T_{k}}{T_{R}}$	$cc_k \coloneqq c_k$	$cc_{_R}$	$c = \frac{c_R}{2}$	co	$c_{R-1} \coloneqq c$	R-1+-	$\frac{2}{R}$	cc_{R+1}	$:= c_{R+1} + \frac{c_R}{4}$
$k = \begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \end{bmatrix} rx_{k} = \begin{bmatrix} 8 \\ 9 \\ 10 \\ 11 \\ 12 \end{bmatrix}$	$\begin{bmatrix} 0.25 \\ 0.5 \\ 1 \\ 2 \\ 4 \\ 8 \\ 16 \\ 32 \\ 64 \\ 128 \\ 256 \\ 512 \\ \end{bmatrix}$	$cc_k = \frac{1}{k}$	0.04 0.066 0.032 0.095 0.1 0.124 0.146 0.149 0.118 0.072 0.039 0.02	$c_k =$	0.04 0.05 0.063 0.08 0.1 0.124 0.146 0.149 0.118 0.072 0.039 0.02	$f_k =$	$\begin{bmatrix} 2.977 \\ 1.489 \\ 0.744 \\ 0.372 \\ 0.186 \\ 0.093 \\ 0.047 \\ 0.023 \\ 0.012 \\ 0.006 \\ 0.003 \\ 0.001 \end{bmatrix}$	$T_k =$	0.336 0.672 1.344 2.687 5.374 10.749 21.497 42.995 85.989 171.978 343.957 687.913

Harm×nicos corrigidos conforme o espectro do vento:

$$Pp(t,k) = P(t,k) \cdot cc_k$$

- e) Correla´² o Espacial
- Tamanho da Rajada Equivalente:

$\Delta z 0_k = egin{bmatrix} 0.993 \\ 1.987 \\ 3.973 \\ 7.946 \\ 15.893 \\ 31.785 \\ 63.571 \\ 127.141 \\ 254.282 \\ 508.564 \\ 1.017 \\ 2.034 \end{bmatrix}$	-1 Δz 10^3	$\begin{bmatrix} -1.007 \\ -0.503 \\ -0.252 \\ -0.126 \\ -0.063 \\ -0.031 \\ -0.016 \\ -0.008 \\ -0.004 \\ -0.002 \\ -9.832 \cdot 10^{-4} \\ -4.916 \cdot 10^{-4} \end{bmatrix}$		$\begin{bmatrix} 1.007 \\ 0.503 \\ 0.252 \\ 0.126 \\ 0.063 \\ 0.031 \\ 0.016 \\ 0.008 \\ 0.004 \\ 0.002 \\ 9.832 \cdot 10^{-4} \\ 4.916 \cdot 10^{-4} \end{bmatrix}$
--	------------------------	--	--	--


Correla´² o Triangular:

$$L_{_{k}}\!\coloneqq\!2\boldsymbol{\cdot}\Delta\!z0_{_{k}}$$

 $\Delta z 0_k \coloneqq \frac{V_p}{7 \cdot f_k}$

$$G_c\!:=\!z_1^{}\!-\!\frac{L_{_R}^{}}{2}\!=\!32.027$$

$Cr(j,k) \coloneqq ext{if } G_c \leq z_j \leq G$	
$egin{array}{c} rac{1}{\Delta z 0_k} ullet igg(G \ \end{array}$ else if $G_c - Z$	$(c-z_j)$
else if G_c – \angle	$\Delta z 0_{_k} \! \leq \! z_{_j} \! \leq \! G_c$
$\left\ rac{-1}{{\Delta z}0_k}{m{\cdot}}\left(G ight. ight.$	$(c-z_j)$
$\begin{array}{c} \parallel \\ \text{else} \\ \parallel 0 \end{array}$	
e) Harm×nico de for´as nos nÆs:	
Valoridado Media (600s):	$Vm_{j} = 0.5934 \cdot V_{o} \cdot \left(rac{z_{j}}{10} ight)^{0.185}$
- Velocidade M¶dia (600s):	$Vm_j = 0.5954 \cdot V_o \cdot \left(\frac{10}{10}\right)$
- Velocidade de Pico (3s):	$V_{j}\!\coloneqq\!0.94\!\cdot\!V_{o}\!\cdot\!\left(\!rac{z_{j}}{10}\! ight)^{\!0.1}$
- Press² o de Pico:	$q_{j} \coloneqq 0.613 \cdot \left(V_{j}\right)^{2}$
- Carregamento Est®ico:	$q_{est_{j}} \coloneqq 0.613 \cdot \left(Vm_{_{j}} ight)^{2}$
	$Fest_{j}\!\coloneqq\!A_{j}\!\cdot\!Ca_{j}\!\cdot\!q_{est_{j}}$
- Press² o Flutuante:	$q_{f_j} \coloneqq q_j^{} - q_{est_j}^{}$
- Harm×nicos k= 1 a m (m ¶ o nßmero de harm	×nicos):
$Q(t,j,k) \coloneqq q_{f_j} \cdot Cr(j,k) \cdot Pp(t,k)$	
$Ff(t,j,k) \coloneqq Ca_{j} \cdot A_{j} \cdot Q(t,j,k)$	
$Pdinig(t,j)\coloneqq\sum_{k}Ffig(t,j,kig)$	

	$l\!:=\!1,\!26001$
$P1_{l} = Pdin\left(\frac{l-1}{10}, 1\right)$	$P7_{l} \coloneqq Pdin\left(\frac{l-1}{10},7\right)$
$P2_{l} = Pdin\left(\frac{l-1}{10}, 2\right)$	$P8_{l} = Pdin\left(\frac{l-1}{10}, 8\right)$
$P3_{l} = Pdin\left(\frac{l-1}{10}, 3\right)$	$P9_{l} = Pdin\left(\frac{l-1}{10}, 9\right)$
$P4_{l} = Pdin\left(\frac{l-1}{10}, 4\right)$	$P10_{_{l}}\!\coloneqq\!Pdin\!\left(\!rac{l-1}{10},10 ight)$
$P5_{l} = Pdin\left(\frac{l-1}{10}, 5\right)$	$P11_{l} \coloneqq Pdin\left(rac{l-1}{10},11 ight)$
$P6_{l} = Pdin\left(\frac{l-1}{10}, 6\right)$	$P12_{_{l}}\!\coloneqq\!Pdin\Bigl(rac{l-1}{10},12\Bigr)$
$P13_{l} = Pdin\left(\frac{l-1}{10}, 13\right)$	$P19_{l}$:= $Pdin\Big(rac{l-1}{10},19\Big)$
$P14_{l} = Pdin\left(\frac{l-1}{10}, 14\right)$	$P20_{l} \coloneqq Pdin\left(rac{l-1}{10},20 ight)$
$P15_{l} = Pdin\left(\frac{l-1}{10}, 15\right)$	$P21_{l} \coloneqq Pdin\left(\frac{l-1}{10},21\right)$
$P16_{l} = Pdin\left(\frac{l-1}{10}, 16\right)$	$P22_{l}$:= $Pdin\left(\frac{l-1}{10},22\right)$
$P17_{l} = Pdin\left(\frac{l-1}{10}, 17\right)$	$P23_{l} = Pdin\left(\frac{l-1}{10}, 23\right)$
$P18_{l} = Pdin\left(\frac{l-1}{10}, 18\right)$	$P24_{_{l}}\!\coloneqq\!Pdin\!\left(\!\frac{l-1}{10},24\right)$

$P25_{l} = Pdin\left(\frac{l-1}{10}, 25\right)$	$P31_{l} = Pdin\left(\frac{l-1}{10}, 31\right)$
$P26_{l} = Pdin\left(\frac{l-1}{10}, 26\right)$	$P32_{l} = Pdin\left(\frac{l-1}{10}, 32\right)$
$P27_{l} = Pdin\left(\frac{l-1}{10}, 27\right)$	$P33_{l} = Pdin\left(\frac{l-1}{10}, 33\right)$
$P28_{l} = Pdin\left(\frac{l-1}{10}, 28\right)$	$P34_{l} = Pdin\left(\frac{l-1}{10}, 34\right)$
$P29_{l} = Pdin\left(\frac{l-1}{10}, 29\right)$	$P35_{l} \coloneqq Pdin\left(\frac{l-1}{10}, 35\right)$
$P30_{l} = Pdin\left(\frac{l-1}{10}, 30\right)$	$P36_{l} = Pdin\left(\frac{l-1}{10}, 36\right)$
$F_{t1} \coloneqq \max(P1) + Fest_1$	$F_{t1} = 1.417 \cdot 10^3$
$F_{t2} \coloneqq \max(P2) + Fest_2$	$F_{t2} = 2.833 \cdot 10^3$
$F_{t3} = \max(P3) + Fest_3$	$F_{t3} = 1.417 \cdot 10^3$
$F_{t4} \coloneqq \max(P4) + Fest_4$	$F_{t4} = 2.724 \cdot 10^3$
$F_{t5} \coloneqq \max(P5) + Fest_5$	$F_{t5} = 5.448 \cdot 10^3$
$F_{t6} \coloneqq \max(P6) + Fest_6$	$F_{t6} = 2.724 \cdot 10^3$
$F_{t7} \coloneqq \max(P7) + Fest_7$	$F_{t7} = 2.548 \cdot 10^3$
$F_{t8} = \max(P8) + Fest_8$	$F_{t8} = 5.095 \cdot 10^3$
$F_{t9} \coloneqq \max(P9) + Fest_9$	$F_{t9} = 2.548 \cdot 10^3$
$F_{t10} := \max(P10) + Fest_{10}$	$F_{t10} \!=\! 2.641 \!\cdot\! 10^3$
$F_{t11} = \max(P11) + Fest_{11}$	$F_{t11} = 5.282 \cdot 10^3$
$F_{t12} \coloneqq \max\left(P12\right) + Fest_{12}$	$F_{t12} = 2.641 \cdot 10^3$

$F_{t13} = \max(P13) + Fest_{13}$	$F_{t13}\!=\!2.501\!\cdot\!10^3$
$F_{t14} = \max(P14) + Fest_{14}$	$F_{t14} \! = \! 5.003 \cdot 10^3$
$F_{t15} = \max(P15) + Fest_{15}$	$F_{t15}\!=\!2.501\!\cdot\!10^3$
$F_{t16} = \max(P16) + Fest_{16}$	${F}_{t16}\!=\!2.49\! ext{ }\! \cdot \! 10^3$
$F_{t17} = \max(P17) + Fest_{17}$	$F_{t17}\!=\!4.98\!\cdot\!10^3$
$F_{t18} = \max(P18) + Fest_{18}$	$F_{t18}\!=\!2.49\!\cdot\!10^3$
$F_{t19} = \max(P19) + Fest_{19}$	${F}_{t19}\!=\!2.466\cdot 10^3$
$F_{t20} \coloneqq \max\left(P20\right) + Fest_{20}$	$F_{t20}\!=\!4.932\cdot 10^3$
$F_{t21} \coloneqq \max\left(P21\right) + Fest_{21}$	$F_{t21} \!=\! 2.466 \! \cdot \! 10^3$
$F_{t22} \coloneqq \max\left(P22\right) + Fest_{22}$	$F_{t22} \! = \! 2.156 \cdot 10^3$
$F_{t23} \coloneqq \max\left(P23\right) + Fest_{23}$	$F_{t23}\!=\!4.312\cdot 10^3$
$F_{t24} \coloneqq \max\left(P24\right) + Fest_{24}$	$F_{t24} \!=\! 2.156 \! \cdot \! 10^3$
$F_{t25} \coloneqq \max\left(P25\right) + Fest_{25}$	$F_{t25} \!=\! 2.05 \! \cdot \! 10^3$
$F_{t26} \coloneqq \max\left(P26\right) + Fest_{26}$	$F_{t26} \!=\! 4.1 \!\cdot\! 10^3$
$F_{t27} \coloneqq \max\left(P27\right) + Fest_{27}$	$F_{t27} \!=\! 2.05 \! \cdot \! 10^3$
$F_{t28} \coloneqq \max\left(P28\right) + Fest_{28}$	$F_{t28}\!=\!1.914\cdot 10^3$
$F_{t29} := \max(P29) + Fest_{29}$	$F_{t29} = 3.829 \cdot 10^3$
$F_{t30} \coloneqq \max\left(P30\right) + Fest_{30}$	$F_{t30} \! = \! 1.914 \cdot 10^3$
$F_{t31} \coloneqq \max\left(P31\right) + Fest_{31}$	$F_{t31} = 1.729 \cdot 10^3$
$F_{t32} \coloneqq \max\left(P32\right) + Fest_{32}$	$F_{t32} = 3.458 \cdot 10^3$
$F_{t33} \coloneqq \max\left(P33\right) + Fest_{33}$	$F_{t33} = 1.729 \cdot 10^3$
$F_{t34} \coloneqq \max\left(P34\right) + Fest_{34}$	$F_{t34} = 1.439 \cdot 10^3$
$F_{t35} \coloneqq \max\left(P35\right) + Fest_{35}$	$F_{t35} \!=\! 2.878 \! \cdot \! 10^3$
$F_{t36} \coloneqq \max\left(P36\right) + Fest_{36}$	$F_{t36} = 1.439 \cdot 10^3$

	$[1.299 \cdot 10^3]$
	$2.598 \cdot 10^3$
	$1.299 \cdot 10^3$
	$2.516 \cdot 10^3$
	$5.031 \cdot 10^3$
	$2.516 \cdot 10^3$
	$2.428 \cdot 10^3$
	$4.857 \cdot 10^3$
	$2.428 \cdot 10^3$
	$2.336 \cdot 10^3$
	$4.671 \cdot 10^3$
	$2.336 \cdot 10^3$
	$2.236 \cdot 10^{3}$
	$4.472 \cdot 10^3$
	$2.236 \cdot 10^{3}$
	$2.128 \cdot 10^3$
	$4.256 \cdot 10^3$
Fest =	$2.128 \cdot 10^3$
1 300	$2.01 \cdot 10^3$
	$4.02 \cdot 10^3$
	$2.01 \cdot 10^3$
	$1.879 \cdot 10^3$
	$3.758 \cdot 10^3$
	$1.879 \cdot 10^3$
	$1.73 \cdot 10^3$
	$3.46 \cdot 10^3$
	$1.73 \cdot 10^3$
	$1.555 \cdot 10^3$
	$3.111 \cdot 10^3$
	$1.555 \cdot 10^3$
	$1.339 \cdot 10^3$
	$2.677 \cdot 10^3$
	$1.339 \cdot 10^3$
	$1.036 \cdot 10^3$
	$2.072 \cdot 10^3$
	$\left[1.036\cdot 10^{3} ight]$

- a) Dados do vento:
- Velocidade B®ica (m/s):

 $V_o = 30$

- Fator Topogr®fico:

 $S_1 = 1.00$

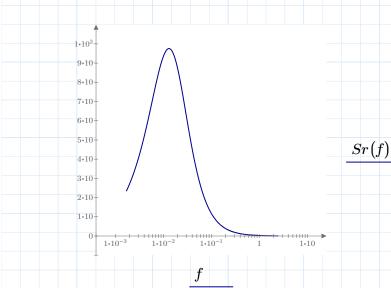
- Fator Estat^ostico:

- $S_3 = 1.00$
- Velocidade de Projeto (velocidade m¶dia sobre 10 minutos a 10 metros de altura sobre o solo, em terreno de categoria II da NBR 6123), em m/s:

$$V_p \coloneqq 0.69 \cdot V_o \cdot S_1 \cdot S_3$$

$$V_p = 20.7$$

- b) Espectro da Velocidade do vento:
- Frequ ncia de Rajadas (Santos, 2018):


f = 0.0017, 0.0018...2.5

- Frequ, ncia Adimensional:

$$x(f) \coloneqq \frac{1220 \cdot f}{V_p}$$

- Espectro de pot, ncia Davenport (FRANCO, 1993):

$$Sr(f) \coloneqq rac{4 \cdot x(f)^2}{\left(1 + x(f)^2\right)^{\frac{4}{3}}} \cdot f$$

Frequencia Fundan do Modo 1 de vibra	nental ^{'2} o):	r = 0.744	128
Quantidade de nÆs		$j\!\coloneqq\!1,2\dots$	60
Erea de Influ, ncia:	- Altura dos n <i>A</i>	s: - Coeficiento	e de Arrasto
[3.75]	[36]		[1.35]
7.5	36		1.35
7.5	36		1.35
7.5	36		1.35
3.75	36		1.35
7.5	33		1.35
15	33		1.35
15	33		1.35
15	33		1.35
7.5	33		1.35
$A_j = \begin{bmatrix} 7.5 \end{bmatrix}$	$z_{j} = \begin{bmatrix} 30 \\ 20 \end{bmatrix}$	$Ca_{j}=$	1.35
15	30		1.35
15	30		1.35
15	30		1.35
7.5	30		1.35
7.5	27		1.35
15	27		1.35
15	$\begin{array}{c c} 27 \\ 27 \end{array}$		1.35
7.5	$\begin{vmatrix} 27 \\ 27 \end{vmatrix}$		1.35
			L: J
	das pressÞes flutuantes:		
Nßmero de harm×r	icos:	$k\!\coloneqq\!1,2\dots$	12
Frequencia Resson	ante:	$R \coloneqq 3$	
· Per⁰odo Ressonanto	T_R := $\frac{1}{R}$		
Frequencia para o l	narm×nico "k":	$f_k\!\coloneqq\!rac{r}{2^{(k-1)}}$	D)
			· n)
. Per⁰odo para o harı	mynica "k":	$T_k \coloneqq \frac{1}{f_k}$	

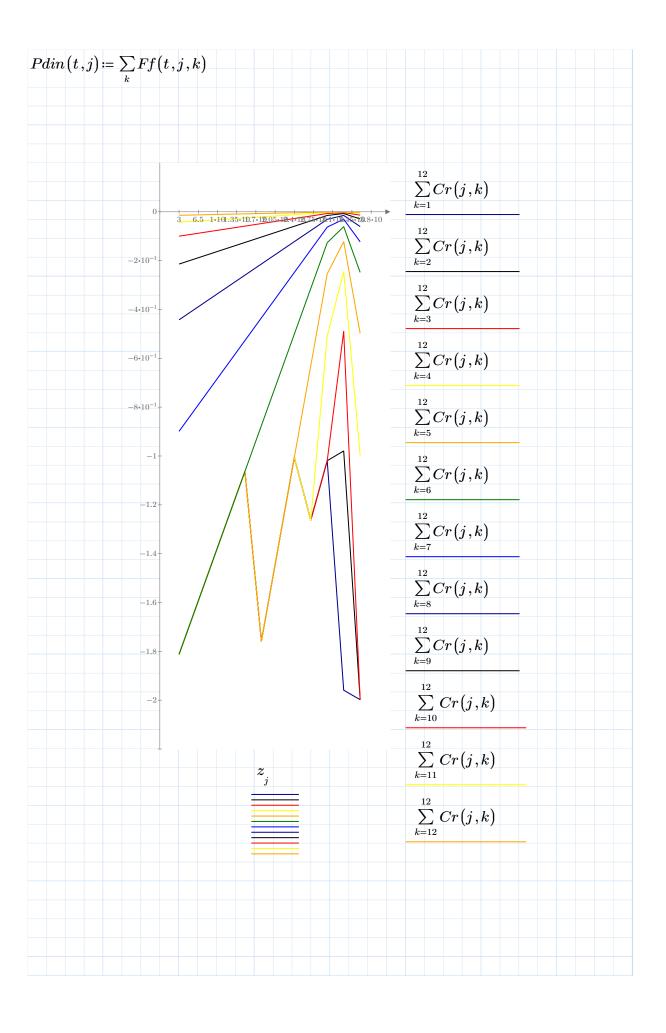
- Intervalos de frequencias:	
$f_{a_k} \coloneqq \frac{r}{2^{(k-0.5-R)}}$	$f_{p_k}\!\coloneqq\!rac{r}{2^{(k+0.5-R)}}$
$2^{(k-0.5-R)}$	2^{p_k} $2^{(k+0.5-R)}$
- Valores dos intervalos de frequencia	a:
[4.21]	$\lceil 2.105 \rceil$
2.105	1.053
1.053	0.526
0.526	0.263
0.263	$\begin{bmatrix} 0.250 \\ 0.132 \end{bmatrix}$
0.132	
$f_{a_k} = egin{bmatrix} 0.132 \\ 0.066 \end{bmatrix}$	$f_{p_k} = \begin{vmatrix} 0.066 \\ 0.033 \end{vmatrix}$
0.033	$\begin{bmatrix} 0.036 \\ 0.016 \end{bmatrix}$
0.016	0.008
0.008	$\begin{bmatrix} 0.000 \\ 0.004 \end{bmatrix}$
0.004	$\begin{bmatrix} 0.002 \\ 0.002 \end{bmatrix}$
0.002	$\begin{bmatrix} 0.001 \end{bmatrix}$
[0,00]	
- Par $^{\circ}$ metro "Ck": $C_k \coloneqq \sqrt{2 \cdot \int\limits_{f_{p_k}}^{f_{a_k}} Sr(f) \mathrm{d}f} \qquad \qquad c_k \coloneqq -1$	
$C_{\iota} \coloneqq \sqrt{2 \cdot \left(Sr(f) \mathrm{d}f \right)} \qquad c_{\iota} \coloneqq -1$	K
k $\int_{f_{p_k}}$ f	$\sum C$
·	
- Gera '2 o de Magulos de Fase Aleat A	rios:
$ heta_k$	$=\operatorname{rnd}\left(2ullet\pi ight)$
	[5.965]
	3.453
	2.964
	5.322
	2.866
<u>a</u>	_ 6.176
$ heta_k$	= 4.644
	1.232
	5.274
	3.147
	0.173
	$\lfloor 3.598 \rfloor$
Tampa	4. 0.01 600
- Tempo:	t := 0, 0.1600

$$P(t,k) \coloneqq \cos\left(2 \cdot \frac{\pi}{T_R \cdot 2^{k-R}} \cdot t - \theta_k\right)$$

- Corre 'Pes sugeridas por FRANCO (1993):

	1	0.25	[0.04]	0.04	[2.977]	[0.336]
	2	0.5	0.066	0.05	1.489	0.672
	3	1	0.032	0.063	0.744	1.344
	4	2	0.095	0.08	0.372	2.687
	5	4	0.1	0.1	0.186	5.374
k =	$6 \mid_{rr}$	8	cc = 0.124	c = 0.124	f _ 0.093	$T = \begin{bmatrix} 10.749 \end{bmatrix}$
70 —		k 16	k = 0.146	k = 0.146	$\frac{J_k}{ } = 0.047 $	k = 21.497
	8	32	0.149	0.149	0.023	42.995
	9	64	0.118	0.118	0.012	85.989
	10	128	0.072	0.072	0.006	171.978
	11	256	0.039	0.039	0.003	343.957
Ĺ	$\lfloor 12 \rfloor$	512	$\begin{bmatrix} 0.02 \end{bmatrix}$	$\begin{bmatrix} 0.02 \end{bmatrix}$	$\lfloor 0.001 \rfloor$	[687.913]

Harm×nicos corrigidos conforme o espectro do vento:


$$Pp(t,k) = P(t,k) \cdot cc_k$$

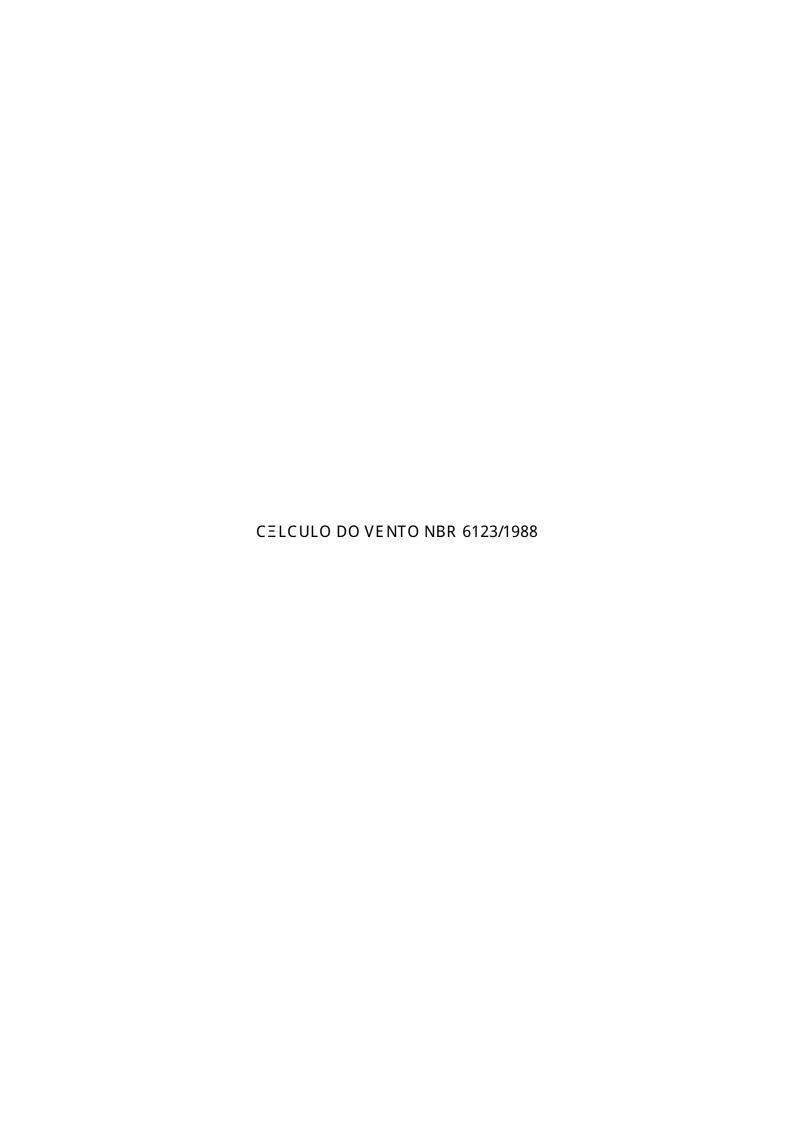
e) Correla '2 o Espacial

$$\Delta z 0_k = \begin{bmatrix} 0.993 \\ 1.987 \\ 3.973 \\ 7.946 \\ 15.893 \\ 31.785 \\ 63.571 \\ 127.141 \\ 254.282 \\ 508.564 \\ 1.017 \cdot 10^3 \\ 2.034 \cdot 10^3 \end{bmatrix} \begin{bmatrix} -1.007 \\ -0.503 \\ -0.252 \\ -0.126 \\ -0.063 \\ -0.0016 \\ -0.008 \\ -0.004 \\ -0.002 \\ -9.832 \cdot 10^{-4} \\ -4.916 \cdot 10^{-4} \end{bmatrix} \begin{bmatrix} 1.007 \\ 0.503 \\ 0.252 \\ 0.126 \\ 0.063 \\ 0.0063 \\ 0.0016 \\ 0.002 \\ 0.002 \\ 0.002 \\ 0.002 \\ 0.002 \\ 0.002 \\ 0.004 \\ 0.002 \\ 0.004 \\ 0.002 \\ 0.004 \\ 0.002 \\ 0.004 \\ 0.002 \\ 0.004 \\ 0.002 \\ 0.004 \\ 0.002 \\ 0.004 \\ 0.004 \\ 0.002 \\ 0.004 \\ 0.0$$

 $\Delta z 0_k \coloneqq rac{V_p}{7 \cdot f_k}$

Correla´² o Triangular:	$L_{_{k}}\!\coloneqq\!2\boldsymbol{\cdot}\Delta\!z0_{_{k}}$
Centro de Rajada: $G_c \coloneqq z_1 - \frac{L_R}{2} = 32.027$	
$Cr(j,k)\!\coloneqq\! ext{if }G_c\!\leq\!z_j^{}\!\leq\!G_c\!+\!\Delta\!z0_k^{}$	
$egin{aligned} rac{1}{\Delta z 0_k} oldsymbol{\cdot} \left(G_c - z_j ight) \ & ext{else if } G_c - \Delta z 0_k \! \leq \! z_j \! \leq \! G_k \end{aligned}$	
$\left\ rac{-1}{\Delta z 0_k}ullet \left(G_c-z_j ight)$	
else 0	
e) Harm×nico de for´as nos nÆs:	
- Velocidade M¶dia (600s):	$Vm_{j} \coloneqq 0.5934 \cdot V_{o} \cdot \left(\frac{z_{j}}{10}\right)^{0.185}$
- Velocidade de Pico (3s):	$V_{j}\!\coloneqq\!0.94\!\cdot\!V_{o}\!\cdot\!\left(\!rac{z_{j}}{10}\! ight)^{\!0.1}$
- Press² o de Pico:	$q_{j} = 0.613 \cdot \left(V_{j}\right)^{2}$
- Carregamento Est®ico:	$q_{est_j} = 0.613 \cdot \left(Vm_j^{}\right)^2$
	$Fest_{j} \coloneqq A_{j} \cdot Ca_{j} \cdot q_{est_{j}}$
- Press² o Flutuante:	$q_{f_j}\!\coloneqq\!q_{_j}\!-q_{est_j}$
- Harm×nicos k= 1 a m (m ¶ o nßmero de harm×nicos):	
$Q(t,j,k) \coloneqq q_{f_j} \cdot Cr(j,k) \cdot Pp(t,k)$	
$Ff(t,j,k) \coloneqq Ca_{j} \cdot A_{j} \cdot Q(t,j,k)$	

	<i>l</i> := 1,26001	
$P1_{l} = Pdin\left(\frac{l-1}{10}, 1\right)$		$P11_{l} = Pdin\left(\frac{l-1}{10}, 11\right)$
$P2_{l} \coloneqq Pdin\left(\frac{l-1}{10},2\right)$		$P12_{l} = Pdin\left(\frac{l-1}{10}, 12\right)$
$P3_{l} \coloneqq Pdin\left(\frac{l-1}{10},3\right)$		$P13_{l} = Pdin\left(\frac{l-1}{10}, 13\right)$
$P4_{l} \coloneqq Pdin\left(\frac{l-1}{10},4\right)$		$P14_{l} = Pdin\left(\frac{l-1}{10}, 14\right)$
$P5_{l} \coloneqq Pdin\left(\frac{l-1}{10}, 5\right)$		$P15_{l} \coloneqq Pdin\left(\frac{l-1}{10}, 15\right)$
$P6_{l} = Pdin\left(\frac{l-1}{10}, 6\right)$		$P16_{l} = Pdin\left(\frac{l-1}{10}, 16\right)$
$P7_{l} = Pdin\left(\frac{l-1}{10}, 7\right)$		$P17_{l} = Pdin\left(\frac{l-1}{10}, 17\right)$
$P8_{l} = Pdin\left(\frac{l-1}{10}, 8\right)$		$P18_{l} = Pdin\left(\frac{l-1}{10}, 18\right)$
$P9_{_{l}} = Pdin\left(\frac{l-1}{10}, 9\right)$		$P19_{l} = Pdin\left(\frac{l-1}{10}, 19\right)$
$P10_{l} = Pdin\left(\frac{l-1}{10}, 10\right)$		$P20_{l} = Pdin\left(\frac{l-1}{10}, 20\right)$


$P21_{l} = Pdin\left(\frac{l-1}{10}, 21\right)$	$P31_{_{l}} \!\!\coloneqq\! Pdin\!\left(\!\frac{l\!-\!1}{10},31\right)$
$P22_{l} = Pdin\left(\frac{l-1}{10}, 22\right)$	$P32_{l} = Pdin\left(\frac{l-1}{10}, 32\right)$
$P23_{l} = Pdin\left(\frac{l-1}{10}, 23\right)$	$P33_{l} \coloneqq Pdin\left(\frac{l-1}{10}, 33\right)$
$P24_{l} = Pdin\left(\frac{l-1}{10}, 24\right)$	$P34_{l} = Pdin\left(\frac{l-1}{10}, 34\right)$
$P25_{l} \coloneqq Pdin\left(\frac{l-1}{10}, 25\right)$	$P35_{_{l}} \!\!\coloneqq\! Pdin\!\left(\!\frac{l\!-\!1}{10},35\right)$
$P26_{l} = Pdin\left(\frac{l-1}{10}, 26\right)$	$P36_{l} \coloneqq Pdin\left(\frac{l-1}{10}, 36\right)$
$P27_{l} = Pdin\left(\frac{l-1}{10}, 27\right)$	$P37_{l} \coloneqq Pdin\left(\frac{l-1}{10}, 37\right)$
$P28_{l} = Pdin\left(\frac{l-1}{10}, 28\right)$	$P38_{l} \coloneqq Pdin\left(\frac{l-1}{10}, 38\right)$
$P29_{l} = Pdin\left(\frac{l-1}{10}, 29\right)$	$P39_{l} = Pdin\left(\frac{l-1}{10}, 39\right)$
$P30_{l} = Pdin\left(\frac{l-1}{10}, 30\right)$	$P40_{_{l}} = Pdin\left(\frac{l-1}{10}, 40\right)$

$P41_{l} = Pdin\left(\frac{l-1}{10}, 41\right)$	$P51_{l} \coloneqq Pdin\left(\frac{l-1}{10}, 51\right)$
$P42_{l} = Pdin\left(\frac{l-1}{10}, 42\right)$	$P52_{l} = Pdin\left(\frac{l-1}{10}, 52\right)$
$P43_{l} = Pdin\left(\frac{l-1}{10}, 43\right)$	$P53_{l} \coloneqq Pdin\left(\frac{l-1}{10}, 53\right)$
$P44_{l} = Pdin\left(\frac{l-1}{10}, 44\right)$	$P54_{l} \coloneqq Pdin\left(\frac{l-1}{10}, 54\right)$
$P45_{l} = Pdin\left(\frac{l-1}{10}, 45\right)$	$P55_{l} \coloneqq Pdin\bigg(\frac{l-1}{10}, 55\bigg)$
$P46_{l} = Pdin\left(\frac{l-1}{10}, 46\right)$	$P56_{l} \coloneqq Pdin\left(\frac{l-1}{10}, 56\right)$
$P47_{l} = Pdin\left(\frac{l-1}{10}, 47\right)$	$P57_{l} = Pdin\left(\frac{l-1}{10}, 57\right)$
$P48_{l} = Pdin\left(\frac{l-1}{10}, 48\right)$	$P58_{l} = Pdin\left(\frac{l-1}{10}, 58\right)$
$P49_{l} = Pdin\left(\frac{l-1}{10}, 49\right)$	$P59_{l} \coloneqq Pdin\left(\frac{l-1}{10}, 59\right)$
$P50_{l} = Pdin\left(\frac{l-1}{10}, 50\right)$	$P60_{l} \coloneqq Pdin\left(\frac{l-1}{10}, 60\right)$

$F_{t1} = \max(P1) + Fest$	$F_{t1} = 1.723 \cdot 10^3$
1	
$F_{t2} = \max(P2) + Fest_2$	$F_{t2} = 3.446 \cdot 10^3$
$F_{t3} = \max(P3) + Fest_{3}$	$F_{t3} = 3.446 \cdot 10^3$
$F_{t4} = \max(P4) + Fest_4$	$F_{t4} = 3.446 \cdot 10^3$
$F_{t5} \coloneqq \max(P5) + Fest_5$	$F_{t5} = 1.723 \cdot 10^3$
$F_{t6} \coloneqq \max\left(P6\right) + Fest_{6}$	$F_{t6} = 3.313 \cdot 10^3$
$F_{t7} \coloneqq \max\left(P7\right) + Fest_{7}$	$F_{t7} = 6.625 \cdot 10^3$
$F_{t8} \coloneqq \max\left(P8\right) + Fest_{8}$	$F_{t8}\!=\!6.625\cdot 10^3$
$F_{t9} \coloneqq \max\left(P9\right) + Fest_{9}$	$F_{t9}\!=\!6.625\!\cdot\!10^3$
$F_{t10} \coloneqq \max\left(P10\right) + Fest_{_{10}}$	$F_{t10}\!=\!3.313\!\cdot\!10^3$
$F_{t11} \coloneqq \max(P11) + Fest_{11}$	$F_{t11} = 3.098 \cdot 10^3$
$F_{t12} \coloneqq \max\left(P12\right) + Fest_{12}$	$F_{t12}\!=\!6.197\!\cdot\!10^3$
$F_{t13} \coloneqq \max\left(P13\right) + Fest_{_{13}}$	$F_{t13}\!=\!6.197\!\cdot\!10^3$
$F_{t14} = \max(P14) + Fest_{14}$	${F}_{t14}\!=\!6.197\!\cdot\!10^3$
$F_{t15} \coloneqq \max\left(P15\right) + Fest_{15}$	$F_{t15}\!=\!3.098\!\cdot\!10^3$
$F_{t16} \coloneqq \max\left(P16\right) + Fest_{16}$	$F_{t16}\!=\!3.212\!\cdot\!10^3$
$F_{t17} \coloneqq \max\left(P17\right) + Fest_{17}$	$F_{t17}\!=\!6.424\cdot 10^3$
$F_{t18} \coloneqq \max\left(P18\right) + Fest_{18}$	$F_{t18}\!=\!6.424\!\cdot\!10^3$
$F_{t19} \coloneqq \max\left(P19\right) + Fest_{19}$	$F_{t19}\!=\!6.424\!\cdot\!10^3$
$F_{t20} \coloneqq \max\left(P20\right) + Fest_{20}$	$F_{t20}\!=\!3.212\!\cdot\!10^3$
$F_{t21} \coloneqq \max\left(P21\right) + Fest_{21}$	$F_{t21} = 3.042 \cdot 10^3$
$F_{t22} \coloneqq \max\left(P22\right) + Fest_{22}$	$F_{t22} = 6.085 \cdot 10^3$
$F_{t23} = \max(P23) + Fest_{23}$	$F_{t23}\!=\!6.085\!\cdot\!10^3$
$F_{t24} = \max(P24) + Fest_{24}$	$F_{t24}\!=\!6.085\!\cdot\!10^3$

$\boldsymbol{F}_{t25} \coloneqq \max\left(P25\right) + \boldsymbol{Fest}_{_{25}}$	$F_{t25} = 3.042 \cdot 10^3$
$\boldsymbol{F}_{t26}\coloneqq \max\left(P26\right) + \boldsymbol{Fest}_{26}$	$F_{t26} = 3.029 \cdot 10^3$
$F_{t27} \coloneqq \max\left(P27\right) + Fest_{27}$	$F_{t27} = 6.057 \cdot 10^3$
$F_{t28} \coloneqq \max\left(P28\right) + Fest_{28}$	$F_{t28} = 6.057 \cdot 10^3$
$F_{t29} \coloneqq \max\left(P29\right) + Fest_{29}$	$F_{t29} = 6.057 \cdot 10^3$
$F_{t30} \coloneqq \max\left(P30\right) + Fest_{30}$	$F_{t30} = 3.029 \cdot 10^3$
$F_{t31} \coloneqq \max\left(P31\right) + Fest_{_{31}}$	$F_{t31} = 2.999 \cdot 10^3$
$F_{t32} \coloneqq \max\left(P32\right) + Fest_{32}$	$F_{t32} = 5.999 \cdot 10^3$
$F_{t33} \coloneqq \max\left(P33\right) + Fest_{33}$	$F_{t33} = 5.999 \cdot 10^3$
$F_{t34} \coloneqq \max\left(P34\right) + Fest_{34}$	$F_{t34} = 5.999 \cdot 10^3$
$F_{t35} \coloneqq \max\left(P35\right) + Fest_{35}$	$F_{t35} = 2.999 \cdot 10^3$
$F_{t36} \coloneqq \max\left(P36\right) + Fest_{36}$	$F_{t36} = 2.622 \cdot 10^3$
$F_{t37} \coloneqq \max\left(P37\right) + Fest_{37}$	$F_{t37} = 5.244 \cdot 10^3$
$F_{t38} \coloneqq \max\left(P38\right) + Fest_{38}$	$F_{t38} = 5.244 \cdot 10^3$
$F_{t39} \coloneqq \max\left(P39\right) + Fest_{39}$	$F_{t39} = 5.244 \cdot 10^3$
$F_{t40} \coloneqq \max\left(P40\right) + Fest_{40}$	$F_{t40} = 2.622 \cdot 10^3$
$F_{t41} \coloneqq \max\left(P41\right) + Fest_{_{41}}$	$F_{t41} = 2.493 \cdot 10^3$
$F_{t42} \coloneqq \max\left(P42\right) + Fest_{_{42}}$	$F_{t42} \!=\! 4.987 \! \cdot \! 10^3$
$F_{t43} \coloneqq \max\left(P43\right) + Fest_{43}$	$F_{t43} = 4.987 \cdot 10^3$
$F_{t44} \coloneqq \max\left(P44\right) + Fest_{_{44}}$	$F_{t44} = 4.987 \cdot 10^3$
$F_{t45} \coloneqq \max\left(P45\right) + Fest_{_{45}}$	$F_{t45} = 2.493 \cdot 10^3$
$F_{t46} \coloneqq \max\left(P46\right) + Fest_{_{46}}$	$F_{t46} = 2.328 \cdot 10^3$
$F_{t47} \coloneqq \max\left(P47\right) + Fest_{_{47}}$	$F_{t47} = 4.657 \cdot 10^3$
$F_{t48} \coloneqq \max\left(P48\right) + Fest_{48}$	$F_{t48} = 4.657 \cdot 10^3$

$F_{t49}\!:=\!\max\left(P49\right)\!+\!Fest_{_{49}}$		$F_{t49}\!=\!4.657\cdot \!10^3$
$F_{t50}\!\coloneqq\!\max\left(P50\right)\!+\!Fest_{_{50}}$		$F_{t50}\!=\!2.328\cdot 10^3$
$F_{t51} \! \coloneqq \! \max \left(\! P51 \right) \! + \! Fest_{51}$		$F_{t51} = 2.103 \cdot 10^3$
$F_{t52}\!:=\!\max\left(P52\right)\!+\!Fest_{_{52}}$		$F_{t52} \!=\! 4.205 \cdot 10^3$
$F_{t53}\!:=\!\max\left(P53\right)\!+\!Fest_{_{53}}$		$F_{t53}\!=\!4.205\!\cdot\!10^3$
$F_{t54}\!:=\!\max\left(P54\right)\!+\!Fest_{_{54}}$		$F_{t54} \!=\! 4.205 \! \cdot \! 10^3$
$F_{t55}\!\coloneqq\!\max\left(P55\right)\!+\!Fest_{_{55}}$		$F_{t55} = 2.103 \cdot 10^3$
$F_{t56} \coloneqq \max\left(P56\right) + Fest_{56}$		$F_{t56} \! = \! 1.75 \cdot 10^3$
$F_{t57} \coloneqq \max\left(P57\right) + Fest_{57}$		$F_{t57} = 3.5 \cdot 10^3$
$F_{t58} := \max(P58) + Fest_{58}$		$F_{t58} = 3.5 \cdot 10^3$
$F_{t59}\!:=\!\max\big(P59\big)\!+\!Fest_{_{59}}$		$F_{t59} = 3.5 \cdot 10^3$
$F_{t60} \coloneqq \max\left(P60\right) + Fest_{60}$		$F_{t60} \! = \! 1.75 \cdot 10^3$
	$3.783 \cdot 10^3$	
	$1.892 \cdot 10^3$	
	$1.628 \cdot 10^3$	
	$3.256 \cdot 10^3$	
	$3.256 \cdot 10^3$	
Fest =	$egin{array}{c c} 3.256 \cdot 10^3 \\ 1.628 \cdot 10^3 \\ \end{array}$	
	$\begin{vmatrix} 1.628 \cdot 10 \\ 1.26 \cdot 10^3 \end{vmatrix}$	
	$\begin{bmatrix} 1.20 \cdot 10 \\ 2.52 \cdot 10^3 \end{bmatrix}$	
	$2.52 \cdot 10$ $2.52 \cdot 10^3$	
	$2.52 \cdot 10^{3}$ $2.52 \cdot 10^{3}$	
	$1.26 \cdot 10^3$	

Velocidade Carac	terºstica:		
Velocidade B®ica:			$V_o = 30$
Fator Topogr®fico:			$S_1 = 1.00$
Fator Estat ^o stico:			$S_3 = 1.00$
Fator de Rugosidac	le:		
b = 0.85			
$F_r \coloneqq 1.00$			
p = 0.125			
For´a de arrasto:			
	Para 4 an	idares:	
Altura Total:			$H_4 \coloneqq 12$
V 4 0 6			7
Vento 0é:			
$L_{1.0} = 20$	$L_{2.0} := 10$		
T.	H		
$\frac{L_{1.0}}{L_{2.0}} = 2$	$\frac{H_4}{L_{1.0}} = 0.6$	$C_{a.0}\!\coloneqq\!1.2$	
$rac{L_{1.0}}{L_{2.0}} = 2$	$\frac{H_4}{L_{1.0}} = 0.6$	$C_{a.0} \coloneqq 1.2$	
$L_{2.0}$	$\frac{H_4}{L_{1.0}}$ = 0.6	$C_{a.0}$:= 1.2	
$L_{2.0}$	$\frac{H_4}{L_{1.0}}$ = 0.6	$C_{a.0}$:= 1.2	
$rac{L_{1.0}}{L_{2.0}}$ = 2 Vento 90é: $L_{1.90}$:= 10	$\frac{H_4}{L_{1.0}} = 0.6$ $L_{2.90} = 20$	$C_{a.0}$:= 1.2	
$L_{2.0}$ Vento 90é: $L_{1.90}\!\coloneqq\!10$	$L_{2.90}\!\coloneqq\!20$		
$L_{2.0}$ Vento 90é: $L_{1.90}\!\coloneqq\!10$	21.0	$C_{a.0}$:= 1.2 $C_{a.90}$:= 0.78	
L _{2.0} Vento 90é:	$L_{2.90}\!\coloneqq\!20$		
$L_{2.0}$ Vento 90é: $L_{1.90}\!:=\!10$ $\frac{L_{1.90}}{L_{2.90}}\!=\!0.5$	$L_{2.90}\!\coloneqq\!20$		
$L_{2.0}$ Vento 90é: $L_{1.90}\!\coloneqq\!10$	$L_{2.90}\!\coloneqq\!20$	$C_{a.90}\!\coloneqq\!0.78$	

$$F_{a.1}(z)\!\coloneqq\!C_{a.0}\!\cdot\!\left(0.613\cdot\!\left(\boldsymbol{V}_{o}\!\cdot\!\boldsymbol{S}_{1}\!\cdot\!\boldsymbol{b}\!\cdot\!\boldsymbol{F}_{r}\!\cdot\!\left(\frac{z}{10}\right)^{p}\cdot\!\boldsymbol{S}_{3}\right)^{2}\right)\!\cdot\!\boldsymbol{A}_{1.0}$$

$$F_{a.1}(12) = 1.877 \cdot 10^3$$

Ξrea 2

$$F_{a.2}(z)\!\coloneqq\!C_{a.0}\!\cdot\!\left(0.613\cdot\!\left(V_o\!\cdot\!S_1\!\cdot\!b\cdot\!F_r\!\cdot\!\left(\frac{z}{10}\right)^p\cdot\!S_3\right)^2\right)\!\cdot\!A_{2.0}$$

$$F_{a.2}(3) = 2.655 \cdot 10^3$$

$$F_{a.2}(6) = 3.157 \cdot 10^3$$

$$F_{a,2}(9) = 3.494 \cdot 10^3$$

Ξrea 3:

$$F_{a.3}(z)\!\coloneqq\!C_{a.0}\!\cdot\!\left(0.613\!\cdot\!\left(V_o\!\cdot\!S_1\!\cdot\!b\cdot\!F_r\!\cdot\!\left(\frac{z}{10}\right)^p\cdot\!S_3\right)^2\right)\!\cdot\!A_{3.0}$$

$$F_{a.3}(12) = 3.755 \cdot 10^3$$

Ξrea 4

$$F_{a.4}(z) \coloneqq C_{a.0} \cdot \left(0.613 \cdot \left(V_o \cdot S_1 \cdot b \cdot F_r \cdot \left(\frac{z}{10}\right)^p \cdot S_3\right)^2\right) \cdot A_{4.0}$$

$$F_{a.4}(3) = 5.31 \cdot 10^3$$

$$F_{a.4}(6) = 6.315 \cdot 10^3$$

$$F_{a.4}(9) = 6.988 \cdot 10^3$$

	VENTO 90é
$A_{1.90} = 1.5 \cdot 2.5$	$A_{3.90} := 5 \cdot 1.5$
$A_{2.90} = 3 \cdot 2.5$	$A_{4.90} \coloneqq 5 \cdot 3$
Erea 1	4.30
	$(z)^p$
$F_{a.1.90}(z) = C_{a.90} \cdot \left[0.613 \right]$	$\cdot \left(V_o \cdot S_1 \cdot b \cdot F_r \cdot \left(rac{z}{10} ight)^p \cdot S_3 ight)^2 \cdot A_{1.90}$
$F_{a.1.90}(12) = 1.22 \cdot 10^3$	
- a.1.90 (1-)	
Erea 2	
$F = (c) \cdot C = 0.612$	$\cdot \left(V_o \! \cdot \! S_1 \! \cdot \! b \! \cdot \! F_r \! \cdot \! \left(rac{z}{10} ight)^p \! \cdot \! S_3 ight)^2 \! \cdot \! A_{2.90}$
$F_{a.2.90}(z) = C_{a.90} \cdot 0.013$	$\left(\begin{array}{c}V_{o} \cdot S_{1} \cdot \theta \cdot F_{r} \cdot \overline{10}\right) \cdot S_{3}\right) \cdot A_{2.90}$
$F_{a.2.90}(3) = 1.726 \cdot 10^3$	
$F_{a.2.90}(6) = 2.052 \cdot 10^3$	
$F_{a,2.90}(9) = 2.271 \cdot 10^3$	
- a.2.90 (°)	
Erea 3:	
	$\cdot \left(V_o \! \cdot \! S_1 \! \cdot \! b \! \cdot \! F_r \! \cdot \! \left(rac{z}{10} ight)^p \! \cdot \! S_3 ight)^2 \! \cdot \! A_{3.90}$
$F_{a.3.90}(z) \coloneqq C_{a.90} \cdot 0.613$	$\left(\begin{bmatrix} V_o \cdot S_1 \cdot b \cdot F_r \cdot \overline{10} \end{bmatrix} \cdot S_3 \right) \cdot A_{3.90}$
$E = (19) \cdot 9.441 \cdot 10^3$	
$F_{a.3.90}(12) = 2.441 \cdot 10^3$	
Erea 4	
	$\cdot \left(V_o \cdot S_1 \cdot b \cdot F_r \cdot \left(rac{z}{10} ight)^p \cdot S_3 ight)^2 \cdot A_{4.90}$
	$\left(\begin{smallmatrix} v & o^{-1} & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 &$
$F_{a.4.90}(3) = 3.451 \cdot 10^3$	
$F_{a.4.90}(6) = 4.105 \cdot 10^3$	
$F_{a.4.90}(9) = 4.542 \cdot 10^3$	

Para 8 andares:

Altura Total:

 $H_8 \coloneqq 24$

Vento 0é:

$$L_{1.0} = 20$$

$$L_{2.0} = 10$$

$$\frac{L_{1.0}}{L_{2.0}} = 2$$

$$\frac{H_8}{L_{1.0}} = 1.2$$

$$C_{a.0}\!\coloneqq\!1.3$$

Vento 90é:

$$L_{1.90} = 10$$

$$L_{2.90}\!\coloneqq\!20$$

$$\frac{L_{1.90}}{L_{2.90}} = 0.5$$

$$\frac{H_8}{L_{1.90}}\!=\!2.4$$

$$C_{a.90}\!\coloneqq\!1.05$$

Ereas nodais:

$$A_{1.0}\!\coloneqq\!1.5\cdot2.5$$

$$A_{2.0}^{1.0} := 3 \cdot 2.5$$

$$A_{3.0} := 5 \cdot 1.5$$

 $A_{4.0} := 5 \cdot 3$

Ξrea 1

$$F_{a.1}(z) \coloneqq C_{a.0} \cdot \left(0.613 \cdot \left(V_o \cdot S_1 \cdot b \cdot F_r \cdot \left(\frac{z}{10}\right)^p \cdot S_3\right)^2\right) \cdot A_{1.0}$$

$$F_{a.1}(24) = 2.419 \cdot 10^3$$

Ξrea 2

$$F_{a.2}(z) \coloneqq C_{a.0} \cdot \left(0.613 \cdot \left(V_o \cdot S_1 \cdot b \cdot F_r \cdot \left(\frac{z}{10}\right)^p \cdot S_3\right)^2\right) \cdot A_{2.0}$$

$$F_{a.2}(3) = 2.876 \cdot 10^3$$

$$F_{a.2}(6) = 3.42 \cdot 10^3$$

$$F_{a.2}(9) = 3.785 \cdot 10^3$$

$A_{2.90} \coloneqq 3 \cdot 2.5$	$A_{4.90} = 5 \cdot 3$
1.30	3.90
$A_{1.90}\!\coloneqq\!1.5\!\cdot\!2.5$	VENTO 90é $A_{3,90}\!\coloneqq\!5\!\cdot\!1.5$
$F_{a.4}(21) = 9.357 \cdot 10^3$	
$F_{a.4}(18) = 9.003 \cdot 10^3$	
$F_{a.4}(15) = 8.602 \cdot 10^3$	
$F_{a.4}(12) = 8.135 \cdot 10^3$	
$F_{a.4}(9) = 7.571 \cdot 10^3$	
$F_{a.4}(6) = 6.841 \cdot 10^3$	
$F_{a.4}(3) = 5.752 \cdot 10^3$	r (10)
$F_{a,4}(z) := C_{a,0} \cdot \left(0.613 \cdot \left(V_{a}\right)\right)$	$\left(S_1 \cdot b \cdot F_r \cdot \left(rac{z}{10} ight)^p \cdot S_3 ight)^2 \cdot A_{4.0}$
Erea 4	
$F_{a.2}(24) = 4.837 \cdot 10^3$	
$F_{a.3}(z) \coloneqq C_{a.0} \cdot \left[0.613 \cdot \left V_o \cdot \right \right]$	$\left(S_1 \cdot b \cdot F_r \cdot \left(\frac{z}{10} \right)^p \cdot S_3 \right)^2 \cdot A_{3.0}$
Erea 3:	$(x)^p$
$F_{a.2}(21) = 4.678 \cdot 10^3$	
$F_{a.2}(18) = 4.502 \cdot 10^3$	

rea 2	
$egin{align*} & \left(a_{.2.90} \cdot \left(0.613 \cdot \left(V_o \cdot S_1 \cdot b \cdot F_r \cdot \left(rac{z}{10} ight)^p \cdot S_3 ight)^2 ight) \cdot \left(a_{.2.90} \cdot \left(3 \right) = 2.323 \cdot 10^3 \\ & \left(a_{.2.90} \cdot \left(6 \right) = 2.763 \cdot 10^3 ight) \cdot \left(a_{.2.90} \cdot \left(9 \right) = 3.057 \cdot 10^3 \\ & \left(a_{.2.90} \cdot \left(12 \right) = 3.285 \cdot 10^3 ight) \cdot \left(a_{.2.90} \cdot \left(15 \right) = 3.474 \cdot 10^3 ight) \cdot \left(a_{.2.90} \cdot \left(18 \right) = 3.636 \cdot 10^3 ight) \cdot \left(a_{.2.90} \cdot \left(21 \right) = 3.779 \cdot 10^3 ight) \cdot \left(a_{.2.90} \cdot \left(21 \right) = 3.779 \cdot 10^3 ight) \cdot \left(a_{.3.90} \cdot \left(2 \right) = 3.907 \cdot 10^3 ight) \cdot \left(a_{.3.90} \cdot \left(24 \right) = 3.907 \cdot 10^3 ight) \cdot \left(a_{.3.90} \cdot \left(24 \right) = 3.907 \cdot 10^3 ight) \cdot \left(a_{.3.90} \cdot \left(24 \right) = 3.907 \cdot 10^3 ight) \cdot \left(a_{.3.90} \cdot \left(24 \right) = 3.907 \cdot 10^3 ight) \cdot \left(a_{.3.90} \cdot \left(24 \right) = 3.907 \cdot 10^3 ight) \cdot \left(a_{.3.90} \cdot \left(24 \right) = 3.907 \cdot 10^3 ight) \cdot \left(a_{.3.90} \cdot \left(24 \right) = 3.907 \cdot 10^3 ight) \cdot \left(a_{.3.90} \cdot \left(24 \right) = 3.907 \cdot 10^3 ight) \cdot \left(a_{.3.90} \cdot \left(24 \right) = 3.907 \cdot 10^3 ight) \cdot \left(a_{.3.90} \cdot \left(24 \right) = 3.907 \cdot 10^3 ight) \cdot \left(a_{.3.90} \cdot \left(24 \right) = 3.907 \cdot 10^3 ight) \cdot \left(a_{.3.90} \cdot \left(24 \right) = 3.907 \cdot 10^3 ight) \cdot \left(a_{.3.90} \cdot \left(24 \right) = 3.907 \cdot 10^3 ight) \cdot \left(a_{.3.90} \cdot \left(24 \right) = 3.907 \cdot 10^3 ight) \cdot \left(a_{.3.90} \cdot \left(24 \right) = 3.907 \cdot 10^3 ight) \cdot \left(a_{.3.90} \cdot \left(24 \right) = 3.907 \cdot 10^3 ight) \cdot \left(a_{.3.90} \cdot \left(24 \right) = 3.907 \cdot 10^3 ight) \cdot \left(a_{.3.90} \cdot \left(24 \right) = 3.907 \cdot 10^3 ight) \cdot \left(a_{.3.90} \cdot \left(24 \right) = 3.907 \cdot 10^3 ight) \cdot \left(a_{.3.90} \cdot \left(24 \right) = 3.907 \cdot 10^3 ight) \cdot \left(a_{.3.90} \cdot \left(24 \right) = 3.907 \cdot 10^3 ight) \cdot \left(a_{.3.90} \cdot \left(24 \right) = 3.907 \cdot 10^3 ight) \cdot \left(a_{.3.90} \cdot \left(24 \right) = 3.907 \cdot 10^3 ight) \cdot \left(a_{.3.90} \cdot \left(24 \right) = 3.907 \cdot 10^3 ight) \cdot \left(a_{.3.90} \cdot \left(24 \right) = 3.907 \cdot 10^3 ight) \cdot \left(a_{.3.90} \cdot \left(24 \right) = 3.907 \cdot 10^3 ight) \cdot \left(a_{.3.90} \cdot \left(24 \right) = 3.907 \cdot 10^3 ight) \cdot \left(a_{.3.90} \cdot \left(24 \right) = 3.907 \cdot 10^3 ight) \cdot \left(a_{.3.90} \cdot \left(24 \right) = 3.907 \cdot 10^3 ight) \cdot \left(a_{.3.90} \cdot \left(24 \right) = 3.907 \cdot 10^3 ight) \cdot \left(a_{.3.90} \cdot \left(24 \right) = 3.907 \cdot 10^3 ight) \cdot \left(a_{.3.90} \cdot \left(24 \right)$	
$F_{a,2.90}(3) = 2.323 \cdot 10^3$ $F_{a,2.90}(6) = 2.763 \cdot 10^3$ $F_{a,2.90}(9) = 3.057 \cdot 10^3$ $F_{a,2.90}(12) = 3.285 \cdot 10^3$ $F_{a,2.90}(15) = 3.474 \cdot 10^3$ $F_{a,2.90}(18) = 3.636 \cdot 10^3$ $F_{a,2.90}(21) = 3.779 \cdot 10^3$ $F_{a,3.90}(z) := C_{a.90} \cdot \left(0.613 \cdot \left(V_o \cdot S_1 \cdot b \cdot F_r \cdot \left(\frac{z}{10}\right)^p \cdot S_3\right)^2\right)$ $F_{a,3.90}(24) = 3.907 \cdot 10^3$	
$F_{a.2.90}(6) = 2.763 \cdot 10^3$ $F_{a.2.90}(9) = 3.057 \cdot 10^3$ $F_{a.2.90}(12) = 3.285 \cdot 10^3$ $F_{a.2.90}(15) = 3.474 \cdot 10^3$ $F_{a.2.90}(18) = 3.636 \cdot 10^3$ $F_{a.2.90}(21) = 3.779 \cdot 10^3$ $F_{a.3.90}(z) := C_{a.90} \cdot \left(0.613 \cdot \left(V_o \cdot S_1 \cdot b \cdot F_r \cdot \left(\frac{z}{10}\right)^p \cdot S_3\right)^2\right)$ $F_{a.3.90}(24) = 3.907 \cdot 10^3$	$\cdot A_{2.90}$
$F_{a.2.90}(9) = 3.057 \cdot 10^3$ $F_{a.2.90}(12) = 3.285 \cdot 10^3$ $F_{a.2.90}(15) = 3.474 \cdot 10^3$ $F_{a.2.90}(18) = 3.636 \cdot 10^3$ $F_{a.2.90}(21) = 3.779 \cdot 10^3$ $F_{a.3.90}(z) := C_{a.90} \cdot \left(0.613 \cdot \left(V_o \cdot S_1 \cdot b \cdot F_r \cdot \left(\frac{z}{10}\right)^p \cdot S_3\right)^2\right) \cdot S_{a.3.90}(24) = 3.907 \cdot 10^3$	
$F_{a.2.90}(12) = 3.285 \cdot 10^3$ $F_{a.2.90}(15) = 3.474 \cdot 10^3$ $F_{a.2.90}(18) = 3.636 \cdot 10^3$ $F_{a.2.90}(21) = 3.779 \cdot 10^3$ $F_{a.3.90}(z) := C_{a.90} \cdot \left(0.613 \cdot \left(V_o \cdot S_1 \cdot b \cdot F_r \cdot \left(\frac{z}{10}\right)^p \cdot S_3\right)^2\right)$ $F_{a.3.90}(24) = 3.907 \cdot 10^3$	
$C_{a.2.90}(15) = 3.474 \cdot 10^3$ $C_{a.2.90}(18) = 3.636 \cdot 10^3$ $C_{a.2.90}(21) = 3.779 \cdot 10^3$ $C_{a.3.90}(z) := C_{a.90} \cdot \left(0.613 \cdot \left(V_o \cdot S_1 \cdot b \cdot F_r \cdot \left(\frac{z}{10}\right)^p \cdot S_3\right)^2\right) \cdot C_{a.3.90}(24) = 3.907 \cdot 10^3$	
$C_{a.2.90}(18) = 3.636 \cdot 10^3$ $C_{a.2.90}(21) = 3.779 \cdot 10^3$ rea 3: $C_{a.3.90}(z) := C_{a.90} \cdot \left(0.613 \cdot \left(V_o \cdot S_1 \cdot b \cdot F_r \cdot \left(\frac{z}{10}\right)^p \cdot S_3\right)^2\right) \cdot C_{a.3.90}(24) = 3.907 \cdot 10^3$	
rea 3:	
rea 3: $V_{a.3.90}(z)\!:=\!C_{a.90}\!\cdot\!\left(0.613\!\cdot\!\left(V_o\!\cdot\!S_1\!\cdot\!b\!\cdot\!F_r\!\cdot\!\left(rac{z}{10} ight)^p\!\cdot\!S_3 ight)^2\right)\!\cdot\!V_{a.3.90}(24)\!=\!3.907\!\cdot\!10^3$	
$egin{align} & V_{a.3.90}(z) \coloneqq C_{a.90} \cdot \left(0.613 \cdot \left(V_o \cdot S_1 \cdot b \cdot F_r \cdot \left(rac{z}{10} ight)^p \cdot S_3 ight)^2 ight) \cdot V_{a.3.90}(24) = 3.907 \cdot 10^3 \end{split}$	
$C_{a.3.90}(z) := C_{a.90} \cdot \left[0.613 \cdot \left(V_o \cdot S_1 \cdot b \cdot F_r \cdot \left(\frac{z}{10} \right)^p \cdot S_3 \right) \right] \cdot C_{a.3.90}(24) = 3.907 \cdot 10^3$	
	$\cdot A_{3.90}$
rea 4	
$C_{a.4.90}(z) \coloneqq C_{a.90} \cdot \left(0.613 \cdot \left(V_o \cdot S_1 \cdot b \cdot F_r \cdot \left(\frac{z}{10}\right)^p \cdot S_3\right)^2\right)$	$\cdot A_{4.90}$
$T_{a.4.90}(3) = 4.646 \cdot 10^3$	
$F_{a.4.90}(6) = 5.525 \cdot 10^3$	$=7.272 \cdot 10^3$
$F_{a.4.90}(9) = 6.115 \cdot 10^3$ $F_{a.4.90}(21)$	$=7.557 \cdot 10^3$
$G_{a.4.90}(12) = 6.571 \cdot 10^3$	
w. 1.00 \ /	

Para 12 andares:

Altura Total:

 $H_{12} = 36$

Vento 0é:

$$L_{1.0} = 20$$

$$L_{2.0} = 10$$

$$\frac{L_{1.0}}{L_{2.0}} \! = \! 2$$

$$\frac{H_{12}}{L_{1.0}} = 1.8$$

$$C_{a.0}\!\coloneqq\!1.35$$

Vento 90é:

$$L_{1.90} = 10$$

$$L_{2.90} = 20$$

$$\frac{L_{1.90}}{L_{2.90}}\!=\!0.5$$

$$\frac{H_{12}}{L_{1.90}} = 3.6$$

$$C_{a.90} \coloneqq 1.11$$

Ereas nodais:

$$A_{1.0} := 1.5 \cdot 2.5$$

$$A_{3.0} = 5 \cdot 1.5$$

$$A_{2.0}^{1.0} := 3 \cdot 2.5$$

$$A_{4.0}^{3.0} = 5 \cdot 3$$

Ξrea 1

$$F_{a.1}(z) \coloneqq C_{a.0} \cdot \left(0.613 \cdot \left(V_o \cdot S_1 \cdot b \cdot F_r \cdot \left(\frac{z}{10}\right)^p \cdot S_3\right)^2\right) \cdot A_{1.0}$$

$$F_{a.1}(36) = 2.78 \cdot 10^3$$

Ξrea 2

$$F_{a.2}(z)\!\coloneqq\!C_{a.0}\!\cdot\!\left(0.613\!\cdot\!\left(V_o\!\cdot\!S_1\!\cdot\!b\cdot\!F_r\!\cdot\!\left(\frac{z}{10}\right)^p\cdot\!S_3\right)^2\right)\!\cdot\!A_{2.0}$$

$$F_{a.2}(3) = 2.987 \cdot 10^3$$

$$F_{a.2}(6) = 3.552 \cdot 10^3$$


$$F_{a.2}(9) = 3.931 \cdot 10^3$$

$$F_{a.2}(12) = 4.224 \cdot 10^3$$

$F_{a.2}(15) = 4.466 \cdot 10^3$	
$F_{a.2}(18) = 4.675 \cdot 10^3$	
$F_{a.2}(21) = 4.858 \cdot 10^3$	
$F_{a.2}(24) = 5.023 \cdot 10^3$	
$F_{a.2}(27) = 5.173 \cdot 10^3$	
$F_{a.2}(30) = 5.311 \cdot 10^3$	
$F_{a.2}(33) = 5.44 \cdot 10^3$	
Erea 3: (
$F_{a.3}(z) \coloneqq C_{a.0} \cdot \left(0.613 \cdot \left(V_o \cdot S_1 \cdot b \cdot F_r \cdot \left(\frac{z}{10}\right)^p \cdot S_3\right)^2\right) \cdot A_{3.0}$	
$F_{a.2}(36) = 5.559 \cdot 10^3$	
Erea 4	
$F_{a.4}(z) \coloneqq C_{a.0} \cdot \left(0.613 \cdot \left(V_o \cdot S_1 \cdot b \cdot F_r \cdot \left(\frac{z}{10}\right)^p \cdot S_3\right)^2\right) \cdot A_{4.0}$	
$F_{a.4}(3) = 5.974 \cdot 10^3$	
$F_{a.4}(6) = 7.104 \cdot 10^3$	
$F_{a.4}(9) = 7.862 \cdot 10^3$	
$F_{a.4}(12) = 8.448 \cdot 10^3$	
$F_{a.4}(15) = 8.933 \cdot 10^3$	
$F_{a.4}(18) = 9.349 \cdot 10^3$	
$F_{a.4}(21) = 9.717 \cdot 10^3$	
$F_{a.4}(24) = 1.005 \cdot 10^4$	
$F_{a.4}(27) = 1.035 \cdot 10^4$	
$F_{a.4}(30) = 1.062 \cdot 10^4$	
$F_{a.4}(33) = 1.088 \cdot 10^4$	

	VENTO 90é
$A_{1.90}\!\coloneqq\!1.5\cdot2.5$	$A_{3.90}\!\coloneqq\!5\cdot\!1.5$
$A_{2.90}\!\coloneqq\!3\cdot\!2.5$	$A_{4.90} \coloneqq 5 \cdot 3$
Erea 1	2)
$F_{a.1.90}(z) := C_{a.90} \cdot \left(0.613 \cdot \right)$	$\left(V_o {\boldsymbol{\cdot}} S_1 {\boldsymbol{\cdot}} b {\boldsymbol{\cdot}} F_r {\boldsymbol{\cdot}} \left(\frac{z}{10}\right)^p {\boldsymbol{\cdot}} S_3\right)^2 \right) {\boldsymbol{\cdot}} A_{1.90}$
$F_{a.1.90}(36) = 2.285 \cdot 10^3$	
Ξrea 2	, , , , , , , , , , , , , , , , , , , ,
$F_{a.2.90}(z) := C_{a.90} \cdot \left[0.613 \cdot \right]$	$\left(V_o {m \cdot} S_1 {m \cdot} b {m \cdot} F_r {m \cdot} \left(rac{z}{10} ight)^p {m \cdot} S_3 ight)^2 ight) {m \cdot} A_{2.90}$
$F_{a.2.90}(3) = 2.456 \cdot 10^3$	
$F_{a.2.90}(6) = 2.921 \cdot 10^3$	
$F_{a.2.90}(9) = 3.232 \cdot 10^3$	
$F_{a.2.90}(12) = 3.473 \cdot 10^3$	
$F_{a.2.90}(15) = 3.672 \cdot 10^3$	
$F_{a.2.90}(18) = 3.844 \cdot 10^3$	
$F_{a.2.90}(21) = 3.995 \cdot 10^3$	
$F_{a.2.90}(24) = 4.13 \cdot 10^3$	
$F_{a.2.90}(27) = 4.254 \cdot 10^3$	
$F_{a.2.90}(30) = 4.367 \cdot 10^3$	
$F_{a.2.90}(33) = 4.473 \cdot 10^3$	
Erea 3:	
$F_{a.3.90}(z)\!\coloneqq\! C_{a.90}\! \cdot\! \Biggl(0.613\! \cdot\!$	$\left(V_o {m \cdot} S_1 {m \cdot} b {m \cdot} F_r {m \cdot} \left(rac{z}{10} ight)^p {m \cdot} S_3 ight)^2 ight) {m \cdot} A_{3.90}$
$F_{a.3.90}(36) = 4.571 \cdot 10^3$	

Erea 4	
$F_{a.4.90}(z) \coloneqq C_{a.90} \cdot \left(0.613 \cdot \left(V_o \cdot S_1 \cdot b \cdot F_r \cdot \left(\frac{z}{10}\right)^p \cdot S_3\right)^2\right) \cdot A_{4.90}$	
$F_{a.4.90}(3) = 4.912 \cdot 10^3$	
$F_{a.4.90}(6) = 5.841 \cdot 10^3$	
$F_{a.4.90}(9) = 6.464 \cdot 10^3$	
$F_{a.4.90}(12) = 6.946 \cdot 10^3$	
$F_{a.4.90}(15) = 7.345 \cdot 10^3$	
$F_{a.4.90}(18) = 7.687 \cdot 10^3$	
$F_{a.4.90}(21) = 7.989 \cdot 10^3$	
$F_{a.4.90}(24) = 8.261 \cdot 10^3$	
$F_{a.4.90}(27) = 8.507 \cdot 10^3$	
$F_{a.4.90}(30) = 8.734 \cdot 10^3$	
$F_{a.4.90}(33) = 8.945 \cdot 10^3$	

Gama-Z	4 pav
$V_1 = 3.76 \ kN$	$h_1\!\coloneqq\!12$ m
V₂:=6.99 kN	$h_2 \coloneqq 9$ $m{m}$
$V_3 = 6.32 \ kN$	$h_3 \coloneqq 6 m$
$V_4 = 5.31 \ kN$	$h_4 \coloneqq 3$ $m{m}$
$U_1 = 0.2184 \ cm$	$N_1 \coloneqq 207.712 \ kN$
$U_2 = 0.1992 \ cm$	$N_2 \! \coloneqq \! 448.553 \; kN$
$U_3 = 0.1503 \ cm$	$N_3 = 690.098 \ kN$
$U_4 \!\coloneqq\! 0.0754 \; cm$	$N_4 = 921.059 \ kN$
	$+N_3 \cdot U_3 + N_4 \cdot U_4 = 3.079 \ kN \cdot m$ $+V_2 \cdot h_2 + V_3 \cdot h_3 + V_4 \cdot h_4) = 135.979 \ kN \cdot m$
$\gamma_z \coloneqq \frac{1}{1 - \frac{M_1}{M_2}} = 1.023$	
	4 pav - VT_Y+
V₁:=3.76 kN	$h_1\!\coloneqq\!12$ $m{m}$
V₂≔6.99 kN	$h_2 = 9$ m
V ₃ :=6.32 kN	$h_3 \coloneqq 6 m$
$V_4 = 5.31 \ kN$	$h_4 \coloneqq 3$ $m{m}$
$U_1 = 0.3645 \ cm$	$N_1 \coloneqq 196.142 \ kN$
$U_2 = 0.3319 \ cm$	$N_2 \coloneqq 414.073 \ extbf{\textit{kN}}$

$U_3 = 0.2506 \ cm$	$N_3 = 632.695 \ kN$
$U_4\!\coloneqq\!0.1255~{\it cm}$	$N_4 = 840.414 \ kN$
$M_1 \coloneqq N_1 \cdot U_1 + N_2 \cdot U_2 -$	$+N_3 \cdot U_3 + N_4 \cdot U_4 = 4.729 \ \mathbf{kN \cdot m}$
$M_2 := 1.4 \ (V_1 \cdot h_1 + V_2 \cdot$	$(h_2 + V_3 \cdot h_3 + V_4 \cdot h_4) = 226.632 \ kN \cdot m$
$\gamma_z \coloneqq \frac{1}{1 - \frac{M_1}{M_2}} = 1.021$	
$1 - \overline{M_2}$	
	4 pav - SC_Y+ Estatico
	4 pav - SC_Y+ Estatico
$V_1 \coloneqq 1.87 \ \textit{kN}$	$h_1\!\coloneqq\!12$ $m{m}$
$V_2 \coloneqq 3.36 \ \textit{kN}$	$h_2 \coloneqq 9$ $m{m}$
$V_3\!\coloneqq\!2.9~{\it kN}$	$h_3 \coloneqq 6$ m
$V_4 \coloneqq 2.24 \ \textit{kN}$	$h_4 \coloneqq 3$ m
$U_1 = 0.1036 \ cm$	$N_1 \coloneqq 207.713 \ kN$
$U_2 \!\coloneqq\! 0.0945 \; cm$	$N_2 := 448.555 \ kN$
$U_3 = 0.0707 \ cm$	$N_3 = 690.1 \ kN$
$U_4 = 0.0352 \ cm$	$N_4 = 921.058 \ kN$
M N II . N II	N. II - N. II - 1 451 kN
$M_1 \coloneqq N_1 \cdot U_1 + N_2 \cdot U_2$	$+N_3 \cdot U_3 + N_4 \cdot U_4 = 1.451 \ \mathbf{kN \cdot m}$
$M_2 \coloneqq 1.4 \cdot 0.6 \ \left(V_1 \cdot h_1 - \right)$	$-V_2 \cdot h_2 + V_3 \cdot h_3 + V_4 \cdot h_4 = 64.512 \ $ kN · m

1 1,022	
$\gamma_z \coloneqq \frac{1}{1 - \frac{M_1}{M_2}} = 1.023$	
$1-\frac{1}{M_2}$	
	4 pav - VT_Y+ Estatico
$V_1 \coloneqq 1.87 \ \textit{kN}$	$h_1 \coloneqq 12$ m
$V_2 \coloneqq 3.36 \ kN$	$h_2 \coloneqq 9$ m
$V_3 = 2.9 \ \textit{kN}$	$h_3 \coloneqq 6 m$
$V_4\!\coloneqq\!2.24~{\it kN}$	$h_4 \coloneqq 3$ m
$U_1 = 0.1731 \ cm$	$N_1 \coloneqq 196.144 \ kN$
$U_2 \coloneqq 0.1574 \; cm$	$N_2\!\coloneqq\!414.077\; {\it kN}$
<i>U</i> ₃ :=0.1178 <i>cm</i>	$N_3 = 632.698 \ kN$
$U_4 = 0.0585 \ cm$	$N_4 := 840.414 \ kN$
$M_1\!\coloneqq\!N_1\!\cdot\!U_1\!+\!N_2\!\cdot\!U_2$	$+N_3 \cdot U_3 + N_4 \cdot U_4 = 2.228 \; kN \cdot m$
$M_2\!\coloneqq\!1.4\ \big(V_1\!\cdot\!h_1\!+\!V_2$	$\cdot h_2 + V_3 \cdot h_3 + V_4 \cdot h_4 = 107.52 \ kN \cdot m$
$\gamma_z \coloneqq \frac{1}{1 - \frac{M_1}{M_2}} = 1.021$	
M_2	
	4 pav - SC_Y+ Dinamico
$V_1 \coloneqq 2.06 \ \textit{kN}$	$h_1\!\coloneqq\!12$ $m{m}$
$V_2 = 3.6 \ kN$	$h_2 \coloneqq 9$ m
V ₃ :=3.36 kN	$h_3 \coloneqq 6 m$
$V_4 = 2.98 \ kN$	$h_4 \coloneqq 3$ m
$U_1 = 0.1159 \; cm$	$N_1 \coloneqq 207.713 \; kN$

$U_2 \coloneqq 0.1059 \; cm$	$N_2 \coloneqq 448.555 \ kN$
$U_3 = 0.08 \ cm$	$N_3 = 690.99 \ kN$
$U_4\!:=\!0.0405~{\it cm}$	$N_4 = 921.058 \ kN$
$M_1 \coloneqq N_1 \cdot U_1 + N_2 \cdot U_2$	$+N_3 \cdot U_3 + N_4 \cdot U_4 = 1.642 \ \mathbf{kN \cdot m}$
$M_2 \coloneqq 1.4 \cdot 0.6 \ \left(V_1 \cdot h_1 - h_2 \right)$	$+V_2 \cdot h_2 + V_3 \cdot h_3 + V_4 \cdot h_4 = 72.425 \ kN \cdot m$
$\gamma_z \coloneqq \frac{1}{1 - \frac{M_1}{M_2}} = 1.023$	
	4 pav - VT_Y+ Dinamico
V₁:=2.06 kN	$h_1\!\coloneqq\!12\;m{m}$
$V_2 \coloneqq 3.6 \; kN$	$h_2 \coloneqq 9$ $m{m}$
V ₃ :=3.36 kN	h_3 :=6 m
$V_4 \coloneqq 2.98 \; \pmb{kN}$	$h_4 \coloneqq 3$ $m{m}$
$U_1 \coloneqq 0.1937 \ \textit{cm}$	$N_1 \coloneqq 196.144 \ kN$
$U_2 \!\coloneqq\! 0.1764 \; cm$	$N_2 \coloneqq 414.077 \ kN$
$U_3 = 0.1334 \ cm$	$N_3 = 632.697 \ kN$
$U_4 \coloneqq 0.0673 \; cm$	$N_4 = 840.414 \ kN$
$M_1 \coloneqq N_1 \cdot U_1 + N_2 \cdot U_2$	$+N_3 \cdot U_3 + N_4 \cdot U_4 = 2.52 \ \mathbf{kN \cdot m}$
$M_2 \coloneqq 1.4 \ \left(V_1 \cdot h_1 + V_2 \cdot h_2 \cdot h_2 \cdot h_1 + V_2 \cdot h_1 + V_2 \cdot h_2 \cdot h$	$m{\cdot} h_2 + V_3 \cdot h_3 + V_4 \cdot h_4 = 120.708 \ kN \cdot m$
$\gamma_z \coloneqq \frac{1}{1 - \frac{M_1}{M_2}} = 1.021$	

8 pav - VT_Y+	
$V_1 \coloneqq 4.84 \ \textit{kN}$	$h_1 \coloneqq 24$ $m{m}$
$V_2 = 9.36 \ kN$	$h_2 \coloneqq 21$ $m{m}$
$V_3 \coloneqq 9 \ kN$	$h_3 \coloneqq 18$ m
V ₄ :=8.6 kN	$h_4\!\coloneqq\!15$ $m{m}$
V ₅ :=8.14 kN	$h_5\!\coloneqq\!12$ m
$V_6 \coloneqq 7.57 \ kN$	$h_6 \coloneqq 9$ m
$V_7 = 6.84 \ kN$	$h_7 \coloneqq 6 \boldsymbol{m}$
$V_8\!\coloneqq\!5.75~$ kN	$h_8\!\coloneqq\!3$ m
$U_1 \coloneqq 1.1835 \ \textit{cm}$	$N_1 \coloneqq 205.219 \ kN$
$U_2 \coloneqq 1.1436 \ \textit{cm}$	$N_2 := 431.448 \ kN$
<i>U</i> ₃ :=1.0666 <i>cm</i>	$N_3 = 658.45 \ kN$
$U_4 = 0.9505 \ cm$	$N_4 = 885.407 \ kN$
$U_5 = 0.7965 \ cm$	$N_5 \coloneqq 1112.366 \; kN$
<i>U</i> ₆ :=0.6074 <i>cm</i>	$N_6 \coloneqq 1339.281 \; kN$
$U_7 = 0.3884 \ cm$	$N_7 \coloneqq 1565.879 \ kN$
$U_8 = 0.1567$ cm	$N_8 = 1767.377 \; kN$
$M_1 \coloneqq N_1 \cdot U_1 + N_2 \cdot U_2$	$+N_3 \cdot U_3 + N_4 \cdot U_4 + N_5 \cdot U_5 + N_6 \cdot U_6 + N_7 \cdot U_7 + N_8 \cdot U_8$
$M_2\!\coloneqq\!1.4\ \big(V_1\!\cdot\!h_1\!+\!V_2$	$oldsymbol{\cdot} h_2 + V_3 oldsymbol{\cdot} h_3 + V_4 oldsymbol{\cdot} h_4 + V_5 oldsymbol{\cdot} h_5 + V_6 oldsymbol{\cdot} h_6 + V_7 oldsymbol{\cdot} h_7 + V_8 oldsymbol{\cdot} h_8 ig)$
$\gamma_z \coloneqq \frac{1}{1 - \frac{M_1}{M_2}} = 1.044$	

8 pav - SC_Y+	
$V_1\!\coloneqq\!4.84~$ kN	$h_1 \coloneqq 24$ m
V₂≔9.36 kN	$h_2 \coloneqq 21$ m
V ₃ :=9 kN	$h_3 \coloneqq 18 \boldsymbol{m}$
V ₄ :=8.6 kN	$h_4 \coloneqq 15$ m
V ₅ :=8.14 kN	$h_5\!\coloneqq\!12$ m
V ₆ :=7.57 kN	$h_6 \coloneqq 9$ m
V ₇ :=6.84 kN	$h_7 \coloneqq 6$ m
$V_8 = 5.75 \ kN$	$h_8 \coloneqq 3$ m
$U_1 = 0.7096 \ cm$	$N_1 := 216.028 \; kN$
<i>U</i> ₂ :=0.6863 <i>cm</i>	$N_2 \coloneqq 463.889 \ kN$
<i>U</i> ₃ :=0.64 <i>cm</i>	$N_3 \! \coloneqq \! 712.547 \; kN$
$U_4 \coloneqq 0.5703 \ cm$	$N_4 = 961.215 \ kN$
$U_5 \coloneqq 0.4779 \ \textit{cm}$	$N_5 \coloneqq 1209.275 \ \textit{kN}$
<i>U</i> ₆ :=0.3645 <i>cm</i>	$N_6 \coloneqq 1458.806 \ \textit{kN}$
$U_7 \!\coloneqq\! 0.2630 \; cm$	$N_7 \coloneqq 1707.435 \ \textit{kN}$
$U_8 = 0.0942 \ cm$	$N_8 \coloneqq 1931.285 \; \textit{kN}$
$M_1\!\coloneqq\!N_1\!\cdot\!U_1\!+\!N_2\!\cdot\!U_2$	$+N_3 \cdot U_3 + N_4 \cdot U_4 + N_5 \cdot U_5 + N_6 \cdot U_6 + N_7 \cdot U_7 + N_8 \cdot U_8$
$M_2 \coloneqq 1.4 \cdot 0.6 \ ig\langle V_1 \cdot h_1 \cdot$	$+V_2 \cdot h_2 + V_3 \cdot h_3 + V_4 \cdot h_4 + V_5 \cdot h_5 + V_6 \cdot h_6 + V_7 \cdot h_7 + V_8 \cdot h_8 $
$\gamma_z \coloneqq \frac{1}{1 - \frac{M_1}{M_2}} = 1.048$	

$\begin{array}{c} V_1 \coloneqq 2.62 \; k N \\ V_2 \coloneqq 4.99 \; k N \\ V_3 \coloneqq 4.71 \; k N \\ V_4 \coloneqq 4.4 \; k N \\ V_5 \coloneqq 4.05 \; k N \\ V_6 \coloneqq 3.64 \; k N \\ V_7 \coloneqq 3.14 \; k N \\ V_8 \coloneqq 2.43 \; k N \\ V_9 \coloneqq 2.44 \; k N \\ V_9 \coloneqq 2.45 \; k N \\ V_9 \coloneqq 2.45 \; k N \\ V_9 \coloneqq 0.354 \; k N \\ V_9 \coloneqq 0.354 \; k N \\ V_9 \coloneqq 0.2925 \; k N_4 \coloneqq 961.219 \; k N \\ V_9 \coloneqq 0.2925 \; k N_4 \coloneqq 961.219 \; k N \\ V_9 \coloneqq 0.1851 \; k N \\ V_9 \coloneqq 0.1851 \; k N \\ V_9 \coloneqq 0.1176 \; k N_9 \coloneqq 1458.809 \; k N \\ V_7 \coloneqq 0.1176 \; k N_9 \coloneqq 1458.809 \; k N \\ V_9 \coloneqq 0.0474 \; k N \\ V_8 \coloneqq 0.0474 \; k N \\ V_8 \coloneqq 0.0474 \; k N \\ V_9 \coloneqq 1.4 \cdot 0.6 \; (V_1 \cdot h_1 + V_2 \cdot h_2 + V_3 \cdot h_3 + V_4 \cdot h_4 + V_5 \cdot h_5 + V_6 \cdot h_6 + V_7 \cdot h_7 + V_8 \cdot h_8) \\ \gamma_2 \coloneqq \frac{1}{1 \cdot \frac{M_1}{M_2}} = 1.047 \\ \frac{1}{1 \cdot \frac{M_1}{M_2}} = 1.$	8 pav - SC_Y+ Est®tice	o la
$V_3 \coloneqq 4.71 \; kN \qquad \qquad h_3 \coloneqq 18 \; m$ $V_4 \coloneqq 4.4 \; kN \qquad \qquad h_4 \coloneqq 15 \; m$ $V_6 \coloneqq 3.64 \; kN \qquad \qquad h_6 \coloneqq 9 \; m$ $V_7 \coloneqq 3.14 \; kN \qquad \qquad h_7 \coloneqq 6 \; m$ $V_8 \coloneqq 2.43 \; kN \qquad \qquad h_8 \coloneqq 3 \; m$ $U_1 \coloneqq 0.3659 \; cm \qquad N_1 \coloneqq 216.031 \; kN$ $U_2 \coloneqq 0.354 \; cm \qquad N_2 \coloneqq 463.893 \; kN$ $U_3 \coloneqq 0.3293 \; cm \qquad N_3 \coloneqq 712.547 \; kN$ $U_4 \coloneqq 0.2925 \; cm \qquad N_4 \coloneqq 961.219 \; kN$ $U_5 \coloneqq 0.244 \; cm \qquad N_5 \coloneqq 1209.978 \; kN$ $U_6 \coloneqq 0.1851 \; cm \qquad N_6 \coloneqq 1458.809 \; kN$ $U_7 \coloneqq 0.1176 \; cm \qquad N_7 \coloneqq 1707.437 \; kN$ $U_8 \coloneqq 0.0474 \; cm \qquad N_8 \coloneqq 1931.284 \; kN$ $M_1 \coloneqq N_1 \cdot U_1 + N_2 \cdot U_2 + N_3 \cdot U_3 + N_4 \cdot U_4 + N_5 \cdot U_5 + N_6 \cdot U_6 + N_7 \cdot U_7 + N_8 \cdot U_8$ $M_2 \coloneqq 1.4 \cdot 0.6 \; (V_1 \cdot h_1 + V_2 \cdot h_2 + V_3 \cdot h_3 + V_4 \cdot h_4 + V_5 \cdot h_5 + V_6 \cdot h_6 + V_7 \cdot h_7 + V_8 \cdot h_8)$	$V_1\!\coloneqq\!2.62~{\it kN}$	$h_1 \coloneqq 24$ $m{m}$
$V_4 \coloneqq 4.4 \; kN \qquad \qquad h_4 \coloneqq 15 \; m$ $V_5 \coloneqq 4.05 \; kN \qquad \qquad h_5 \coloneqq 12 \; m$ $V_6 \coloneqq 3.64 \; kN \qquad \qquad h_6 \coloneqq 9 \; m$ $V_7 \coloneqq 3.14 \; kN \qquad \qquad h_7 \coloneqq 6 \; m$ $V_8 \coloneqq 2.43 \; kN \qquad \qquad h_8 \coloneqq 3 \; m$ $U_1 \coloneqq 0.3659 \; cm \qquad N_1 \coloneqq 216.031 \; kN$ $U_2 \coloneqq 0.354 \; cm \qquad N_2 \coloneqq 463.893 \; kN$ $U_3 \coloneqq 0.3293 \; cm \qquad N_3 \coloneqq 712.547 \; kN$ $U_4 \coloneqq 0.2925 \; cm \qquad N_4 \coloneqq 961.219 \; kN$ $U_5 \coloneqq 0.244 \; cm \qquad N_5 \coloneqq 1209.978 \; kN$ $U_6 \coloneqq 0.1851 \; cm \qquad N_6 \coloneqq 1458.809 \; kN$ $U_7 \coloneqq 0.1176 \; cm \qquad N_7 \coloneqq 1707.437 \; kN$ $U_8 \coloneqq 0.0474 \; cm \qquad N_8 \coloneqq 1931.284 \; kN$ $M_1 \coloneqq N_1 \cdot U_1 + N_2 \cdot U_2 + N_3 \cdot U_3 + N_4 \cdot U_4 + N_5 \cdot U_5 + N_6 \cdot U_6 + N_7 \cdot U_7 + N_8 \cdot U_8$ $M_2 \coloneqq 1.4 \cdot 0.6 \; (V_1 \cdot h_1 + V_2 \cdot h_2 + V_3 \cdot h_3 + V_4 \cdot h_4 + V_5 \cdot h_5 + V_6 \cdot h_6 + V_7 \cdot h_7 + V_8 \cdot h_8)$	$V_2\!\coloneqq\!4.99~{\it kN}$	$h_2\!\coloneqq\!21$ $m{m}$
$V_5 \coloneqq 4.05 \; kN \qquad \qquad h_5 \coloneqq 12 \; m \qquad	$V_3\!\coloneqq\!4.71\;\pmb{kN}$	$h_3 \coloneqq 18$ m
$V_6 \coloneqq 3.64 \; kN \qquad \qquad h_6 \coloneqq 9 \; m$ $V_7 \coloneqq 3.14 \; kN \qquad \qquad h_7 \coloneqq 6 \; m$ $V_8 \coloneqq 2.43 \; kN \qquad \qquad h_8 \coloneqq 3 \; m$ $U_1 \coloneqq 0.3659 \; cm \qquad N_1 \coloneqq 216.031 \; kN$ $U_2 \coloneqq 0.354 \; cm \qquad N_2 \coloneqq 463.893 \; kN$ $U_3 \coloneqq 0.3293 \; cm \qquad N_3 \coloneqq 712.547 \; kN$ $U_4 \coloneqq 0.2925 \; cm \qquad N_4 \coloneqq 961.219 \; kN$ $U_5 \coloneqq 0.244 \; cm \qquad N_5 \coloneqq 1209.978 \; kN$ $U_6 \coloneqq 0.1851 \; cm \qquad N_6 \coloneqq 1458.809 \; kN$ $U_7 \coloneqq 0.1176 \; cm \qquad N_7 \coloneqq 1707.437 \; kN$ $U_8 \coloneqq 0.0474 \; cm \qquad N_8 \coloneqq 1931.284 \; kN$ $M_1 \coloneqq N_1 \cdot U_1 + N_2 \cdot U_2 + N_3 \cdot U_3 + N_4 \cdot U_4 + N_5 \cdot U_5 + N_6 \cdot U_6 + N_7 \cdot U_7 + N_8 \cdot U_8$ $M_2 \coloneqq 1.4 \cdot 0.6 \; (V_1 \cdot h_1 + V_2 \cdot h_2 + V_3 \cdot h_3 + V_4 \cdot h_4 + V_5 \cdot h_5 + V_6 \cdot h_6 + V_7 \cdot h_7 + V_8 \cdot h_8)$	$V_4 \coloneqq 4.4 \; kN$	$h_4\!\coloneqq\!15$ m
$V_7 \coloneqq 3.14 \; kN \qquad \qquad h_7 \coloneqq 6 \; m$ $V_8 \coloneqq 2.43 \; kN \qquad \qquad h_8 \coloneqq 3 \; m$ $U_1 \coloneqq 0.3659 \; cm \qquad N_1 \coloneqq 216.031 \; kN$ $U_2 \coloneqq 0.354 \; cm \qquad N_2 \coloneqq 463.893 \; kN$ $U_3 \coloneqq 0.3293 \; cm \qquad N_3 \coloneqq 712.547 \; kN$ $U_4 \coloneqq 0.2925 \; cm \qquad N_4 \coloneqq 961.219 \; kN$ $U_5 \coloneqq 0.244 \; cm \qquad N_5 \coloneqq 1209.978 \; kN$ $U_6 \coloneqq 0.1851 \; cm \qquad N_6 \coloneqq 1458.809 \; kN$ $U_7 \coloneqq 0.1176 \; cm \qquad N_7 \coloneqq 1707.437 \; kN$ $U_8 \coloneqq 0.0474 \; cm \qquad N_8 \coloneqq 1931.284 \; kN$ $M_1 \coloneqq N_1 \cdot U_1 + N_2 \cdot U_2 + N_3 \cdot U_3 + N_4 \cdot U_4 + N_5 \cdot U_5 + N_6 \cdot U_6 + N_7 \cdot U_7 + N_8 \cdot U_8$ $M_2 \coloneqq 1.4 \cdot 0.6 \; (V_1 \cdot h_1 + V_2 \cdot h_2 + V_3 \cdot h_3 + V_4 \cdot h_4 + V_5 \cdot h_5 + V_6 \cdot h_6 + V_7 \cdot h_7 + V_8 \cdot h_8)$	$V_5\!\coloneqq\!4.05\; {\it kN}$	$oldsymbol{h}_5\!\coloneqq\!12oldsymbol{m}$
$V_8 \coloneqq 2.43 \; kN \qquad \qquad h_8 \coloneqq 3 \; m$ $U_1 \coloneqq 0.3659 \; cm \qquad N_1 \coloneqq 216.031 \; kN$ $U_2 \coloneqq 0.354 \; cm \qquad N_2 \coloneqq 463.893 \; kN$ $U_3 \coloneqq 0.3293 \; cm \qquad N_3 \coloneqq 712.547 \; kN$ $U_4 \coloneqq 0.2925 \; cm \qquad N_4 \coloneqq 961.219 \; kN$ $U_5 \coloneqq 0.244 \; cm \qquad N_5 \coloneqq 1209.978 \; kN$ $U_6 \coloneqq 0.1851 \; cm \qquad N_6 \coloneqq 1458.809 \; kN$ $U_7 \coloneqq 0.1176 \; cm \qquad N_7 \coloneqq 1707.437 \; kN$ $U_8 \coloneqq 0.0474 \; cm \qquad N_8 \coloneqq 1931.284 \; kN$ $M_1 \coloneqq N_1 \cdot U_1 + N_2 \cdot U_2 + N_3 \cdot U_3 + N_4 \cdot U_4 + N_5 \cdot U_5 + N_6 \cdot U_6 + N_7 \cdot U_7 + N_8 \cdot U_8$ $M_2 \coloneqq 1.4 \cdot 0.6 \; (V_1 \cdot h_1 + V_2 \cdot h_2 + V_3 \cdot h_3 + V_4 \cdot h_4 + V_5 \cdot h_5 + V_6 \cdot h_6 + V_7 \cdot h_7 + V_8 \cdot h_8)$	$V_6 \coloneqq 3.64 \ \textit{kN}$	$h_6 \coloneqq 9$ m
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$V_7 = 3.14 \ kN$	$h_7 \coloneqq 6$ m
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$V_8 = 2.43 \ \textit{kN}$	$h_8 \coloneqq 3$ m
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$U_1 = 0.3659 \ cm$	$N_1 := 216.031 \ kN$
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$U_2 \coloneqq 0.354 \ \textit{cm}$	$N_2 := 463.893 \ kN$
$U_5\coloneqq 0.244$ cm $N_5\coloneqq 1209.978$ kN $U_6\coloneqq 0.1851$ cm $N_6\coloneqq 1458.809$ kN $U_7\coloneqq 0.1176$ cm $N_7\coloneqq 1707.437$ kN $U_8\coloneqq 0.0474$ cm $N_8\coloneqq 1931.284$ kN $M_1\coloneqq N_1\cdot U_1+N_2\cdot U_2+N_3\cdot U_3+N_4\cdot U_4+N_5\cdot U_5+N_6\cdot U_6+N_7\cdot U_7+N_8\cdot U_8$ $M_2\coloneqq 1.4\cdot 0.6$ $(V_1\cdot h_1+V_2\cdot h_2+V_3\cdot h_3+V_4\cdot h_4+V_5\cdot h_5+V_6\cdot h_6+V_7\cdot h_7+V_8\cdot h_8)$	$U_3 = 0.3293 \ cm$	$N_3 \coloneqq 712.547 \; kN$
$U_6 \coloneqq 0.1851 \; cm$ $N_6 \coloneqq 1458.809 \; kN$ $U_7 \coloneqq 0.1176 \; cm$ $N_7 \coloneqq 1707.437 \; kN$ $U_8 \coloneqq 0.0474 \; cm$ $N_8 \coloneqq 1931.284 \; kN$ $M_1 \coloneqq N_1 \cdot U_1 + N_2 \cdot U_2 + N_3 \cdot U_3 + N_4 \cdot U_4 + N_5 \cdot U_5 + N_6 \cdot U_6 + N_7 \cdot U_7 + N_8 \cdot U_8$ $M_2 \coloneqq 1.4 \cdot 0.6 \; \left(V_1 \cdot h_1 + V_2 \cdot h_2 + V_3 \cdot h_3 + V_4 \cdot h_4 + V_5 \cdot h_5 + V_6 \cdot h_6 + V_7 \cdot h_7 + V_8 \cdot h_8\right)$	$U_4 \!\coloneqq\! 0.2925 \; cm$	$N_4 = 961.219 \ kN$
$U_7 \coloneqq 0.1176 \ \textbf{\textit{cm}} \qquad N_7 \coloneqq 1707.437 \ \textbf{\textit{kN}}$ $U_8 \coloneqq 0.0474 \ \textbf{\textit{cm}} \qquad N_8 \coloneqq 1931.284 \ \textbf{\textit{kN}}$ $M_1 \coloneqq N_1 \cdot U_1 + N_2 \cdot U_2 + N_3 \cdot U_3 + N_4 \cdot U_4 + N_5 \cdot U_5 + N_6 \cdot U_6 + N_7 \cdot U_7 + N_8 \cdot U_8$ $M_2 \coloneqq 1.4 \cdot 0.6 \ \left(V_1 \cdot h_1 + V_2 \cdot h_2 + V_3 \cdot h_3 + V_4 \cdot h_4 + V_5 \cdot h_5 + V_6 \cdot h_6 + V_7 \cdot h_7 + V_8 \cdot h_8 \right)$	$U_5 = 0.244 \ cm$	$N_5 \coloneqq 1209.978 \ k\!N$
$U_8 \coloneqq 0.0474 \; m{cm} \qquad N_8 \coloneqq 1931.284 \; m{kN}$ $M_1 \coloneqq N_1 \cdot U_1 + N_2 \cdot U_2 + N_3 \cdot U_3 + N_4 \cdot U_4 + N_5 \cdot U_5 + N_6 \cdot U_6 + N_7 \cdot U_7 + N_8 \cdot U_8$ $M_2 \coloneqq 1.4 \cdot 0.6 \; \left(V_1 \cdot h_1 + V_2 \cdot h_2 + V_3 \cdot h_3 + V_4 \cdot h_4 + V_5 \cdot h_5 + V_6 \cdot h_6 + V_7 \cdot h_7 + V_8 \cdot h_8 ight)$	$U_6 = 0.1851 \ cm$	$N_6 \coloneqq 1458.809 \; kN$
$M_1\!:=\!N_1\!\cdot\! U_1\!+\!N_2\!\cdot\! U_2\!+\!N_3\!\cdot\! U_3\!+\!N_4\!\cdot\! U_4\!+\!N_5\!\cdot\! U_5\!+\!N_6\!\cdot\! U_6\!+\!N_7\!\cdot\! U_7\!+\!N_8\!\cdot\! U_8$ $M_2\!:=\!1.4\!\cdot\!0.6\; ig(V_1\!\cdot\! h_1\!+\!V_2\!\cdot\! h_2\!+\!V_3\!\cdot\! h_3\!+\!V_4\!\cdot\! h_4\!+\!V_5\!\cdot\! h_5\!+\!V_6\!\cdot\! h_6\!+\!V_7\!\cdot\! h_7\!+\!V_8\!\cdot\! h_8ig)$	$U_7 = 0.1176 \ cm$	$N_7 \coloneqq 1707.437 \ \textit{kN}$
$M_2\!\coloneqq\!1.4\!\bullet\!0.6\;\left(V_1\!\bullet\! h_1\!+\!V_2\!\bullet\! h_2\!+\!V_3\!\bullet\! h_3\!+\!V_4\!\bullet\! h_4\!+\!V_5\!\bullet\! h_5\!+\!V_6\!\bullet\! h_6\!+\!V_7\!\bullet\! h_7\!+\!V_8\!\bullet\! h_8\right)$	$U_8 \coloneqq 0.0474 \ \textit{cm}$	N_8 := 1931.284 kN
	$M_1\!\coloneqq\!N_1\!\cdot\!U_1\!+\!N_2\!\cdot\!U_2$ -	$+N_3ullet U_3 + N_4ullet U_4 + N_5ullet U_5 + N_6ullet U_6 + N_7ullet U_7 + N_8ullet U_8$
$\gamma_z \coloneqq \frac{1}{1 - \frac{M_1}{M_2}} = 1.047$	$M_2 := 1.4 \cdot 0.6 \ (V_1 \cdot h_1 - 1.4 \cdot 0.6) \ (V_1 \cdot h_2 - 1.4 \cdot 0.6)$	$+V_{2} \cdot h_{2} + V_{3} \cdot h_{3} + V_{4} \cdot h_{4} + V_{5} \cdot h_{5} + V_{6} \cdot h_{6} + V_{7} \cdot h_{7} + V_{8} \cdot h_{8}$
	$\gamma_z \coloneqq \frac{1}{1 - \frac{M_1}{M_2}} = 1.047$	

8 pav - VT_Y+ Est®tico	5
$V_1 \coloneqq 2.62 \ \textit{kN}$	$h_1\!\coloneqq\!24$ $m{m}$
$V_2 = 4.99 \ kN$	$h_2 \coloneqq 21$ m
$V_3 = 4.71 \ kN$	$h_3 \coloneqq 18$ m
$V_4\!\coloneqq\!4.4\;\pmb{kN}$	$h_4\!\coloneqq\!15$ $m{m}$
$V_5 = 4.05 \ kN$	$h_5\!\coloneqq\!12$ $m{m}$
$V_6 \coloneqq 3.64 \ \textit{kN}$	$h_6\!\coloneqq\! 9$ $m{m}$
$V_7 = 3.14 \ kN$	$h_7\!\coloneqq\! 6$ $m{m}$
$V_8 = 2.43 \ kN$	$h_8\!\coloneqq\!3$ $m{m}$
$U_1 = 0.6106 \ cm$	$N_1 \coloneqq 205.223 \; kN$
$U_2 = 0.5899 \ cm$	$N_2 := 431.456 \ kN$
$U_3 = 0.5488 \ cm$	$N_3 = 658.457 \ kN$
$U_4 \coloneqq 0.4874 \ cm$	$N_4 = 855.413 \ kN$
$U_5 = 0.4067 \ cm$	$N_5 \coloneqq 1112.371 \; kN$
$U_6 = 0.3085 \ cm$	$N_6 \coloneqq 1339.286 \ kN$
$U_7 = 0.1961 \ cm$	$N_7 \coloneqq 1565.884 \ kN$
$U_8 = 0.0787$ cm	$N_8 = 1767.375 \ kN$
$M_1 \coloneqq N_1 \cdot U_1 + N_2 \cdot U_2 - U_3 \cdot U_3 = U_3 \cdot U_3 $	$+N_3 \cdot U_3 + N_4 \cdot U_4 + N_5 \cdot U_5 + N_6 \cdot U_6 + N_7 \cdot U_7 + N_8 \cdot U_8$
$M_2 := 1.4 \ (V_1 \cdot h_1 + V_2 \cdot$	$(h_2 + V_3 \cdot h_3 + V_4 \cdot h_4 + V_5 \cdot h_5 + V_6 \cdot h_6 + V_7 \cdot h_7 + V_8 \cdot h_8)$
$\gamma_z \coloneqq \frac{1}{1 - \frac{M_1}{M_2}} = 1.043$	

8 pav - SC_Y+ Dinami	со
$V_1 \coloneqq 2.88 \ \textit{kN}$	$h_1 \coloneqq 24$ $m{m}$
$V_2 = 5.09 \ kN$	$h_2 \coloneqq 21$ m
$V_3 = 5.21 \; kN$	$h_3 \coloneqq 18$ m
$V_4 = 5.06 \ kN$	$h_4\!\coloneqq\!15$ $m{m}$
$V_5 = 5.02 \ kN$	$h_5\!\coloneqq\!12$ m
$V_6 = 4.05 \ kN$	$h_6 \coloneqq 9$ m
$V_7 = 3.99 \ kN$	$h_7 \coloneqq 6$ m
$V_8 = 3.37 \ $ kN	$h_8 \coloneqq 3$ m
$U_1 \coloneqq 0.41 \; cm$	$N_1 = 216.031 \ kN$
$U_2 = 0.397 \ cm$	$N_2 := 463.893 \ kN$
$U_3 = 0.3706 \ cm$	$N_3 = 712.546 \ kN$
$U_4 = 0.3309 \ cm$	$N_4 = 961.218 \ kN$
$U_5 = 0.2778 \ cm$	$N_5 \coloneqq 1209.978 \ \textit{kN}$
$U_6 = 0.2119 \ cm$	$N_6 = 1458.808 \ \textit{kN}$
$U_7 = 0.1355 \ cm$	$N_7 := 1707.437 \ kN$
$U_8 = 0.0549 \ cm$	$N_8 \coloneqq 1931.284 \ \textit{kN}$
$M_1\!\coloneqq\!N_1\!\cdot\!U_1\!+\!N_2\!\cdot\!U_2$ -	$+N_3 ullet U_3 + N_4 ullet U_4 + N_5 ullet U_5 + N_6 ullet U_6 + N_7 ullet U_7 + N_8 ullet U_8$
$M_2 := 1.4 \cdot 0.6 \ (V_1 \cdot h_1 - 1.4 \cdot 0.6) \ (V_1 \cdot h_2 - 1.4 \cdot 0.6) \ (V_2 \cdot h_2 - 1.4 \cdot 0.4)	$+V_{2} \cdot h_{2} + V_{3} \cdot h_{3} + V_{4} \cdot h_{4} + V_{5} \cdot h_{5} + V_{6} \cdot h_{6} + V_{7} \cdot h_{7} + V_{8} \cdot h_{8}$
$\gamma_z \coloneqq \frac{1}{1 - \frac{M_1}{M_2}} = 1.048$	

8 pav - VT_Y+ Dinami	СО
$V_1 \coloneqq 2.88 \ \textit{kN}$	$h_1\!\coloneqq\!24$ $m{m}$
$V_2 = 5.09 \ kN$	$h_2\!\coloneqq\!21$ $m{m}$
$V_3 = 5.21 \ kN$	$h_3 \coloneqq 18$ $m{m}$
$V_4 = 5.06 \ kN$	$h_4\!\coloneqq\!15$ $m{m}$
$V_5 = 5.02 \ kN$	$h_5\!\coloneqq\!12$ $m{m}$
$V_6 = 4.05 \ kN$	$h_6\!\coloneqq\! 9$ $m{m}$
$V_7 = 3.99 \text{ kN}$	$h_7 \coloneqq 6$ m
$V_8 = 3.37 \ kN$	$h_8\!\coloneqq\!3$ m
$U_1 = 0.6841 \ cm$	$N_1 \coloneqq 205.224 \ kN$
$U_2 \!\coloneqq\! 0.6615 \; cm$	$N_2 \coloneqq 431.456 \ kN$
$U_3 = 0.6177 \ cm$	$N_3 = 658.456 \ kN$
$U_4 \!\coloneqq\! 0.5515 \; cm$	$N_4 = 855.412 \ kN$
$U_5 = 0.4629 \ cm$	$N_5 \coloneqq 1112.37 \ kN$
$U_6 = 0.3532 \ cm$	$N_6 \coloneqq 1339.285 \ \textit{kN}$
$U_7 \coloneqq 0.2259 \ \textit{cm}$	$N_7 \coloneqq 1565.883 \ kN$
$U_8 = 0.0913$ cm	$N_8 = 1767.375 \ kN$
7. 7. II. 7. II.	
$NI_1 := IN_1 \cdot U_1 + IN_2 \cdot U_2 + I$	$-N_3 \cdot U_3 + N_4 \cdot U_4 + N_5 \cdot U_5 + N_6 \cdot U_6 + N_7 \cdot U_7 + N_8 \cdot U_8$
$M_2 \coloneqq 1.4 \ \left(V_1 \cdot h_1 + V_2 \cdot \right)$	$h_2 + V_3 \cdot h_3 + V_4 \cdot h_4 + V_5 \cdot h_5 + V_6 \cdot h_6 + V_7 \cdot h_7 + V_8 \cdot h_8$
$\gamma_z \coloneqq \frac{1}{1 - \frac{M_1}{M_2}} = 1.044$	

12 PAV SC_Y+	
$U_1 \coloneqq 1.54983$ cm	$N_1 \coloneqq 220.797 \ \pmb{kN}$
$U_2 \coloneqq 1.51476$ cm	$N_2\!\coloneqq\!473.857\; {\it kN}$
$U_3 \coloneqq 1.4534 \ \textit{cm}$	$N_3 \! \coloneqq \! 727.783 \; kN$
$U_4 \coloneqq 1.3827 \ \textit{cm}$	$N_4 = 981.703 \ kN$
$U_5 = 1.2839 \ cm$	$N_5 \coloneqq 1235.883 \ k\!N$
$U_6 \coloneqq 1.1637 \ \textit{cm}$	$N_6\!\coloneqq\!1490.271\; {\it kN}$
$U_7 \coloneqq 1.0231 \ cm$	$N_7 \coloneqq 1744.885 \ kN$
$U_8 = 0.8633 \ cm$	$N_8 \coloneqq 1999.741 \; kN$
$U_9 = 0.6859 \ cm$	$N_9 \coloneqq 2254.851 \ kN$
$U_{10} \coloneqq 0.4938 \ \textit{cm}$	$N_{10} := 2510.554 \ kN$
$U_{11} = 0.2935 \ cm$	$N_{11} = 2765.821 \ kN$
$U_{12} = 0.1056 \ cm$	$N_{12} \coloneqq 2984.786 \ \textit{kN}$
$V_1 \coloneqq 5.56 \text{ kN}$	$h_1 \coloneqq 36$ m
$V_2 = 10.88 \ kN$	$h_2 \coloneqq 33 \boldsymbol{m}$
V ₃ :=10.62 kN	$h_3 = 30 m$
$V_4 \coloneqq 10.35 \text{ kN}$	$h_4\!\coloneqq\!27$ $m{m}$
$V_5 = 10.05 \ kN$	$h_5\!\coloneqq\!24$ $m{m}$
$V_6 = 9.72 \ kN$	$h_6 \coloneqq 21$ $m{m}$
$V_7 = 9.35 \text{ kN}$	$h_7 \coloneqq 18$ m
V ₈ :=8.93 kN	$h_8 \coloneqq 15$ m
$V_9 = 8.45 \ kN$	$h_9\!\coloneqq\!12$ $m{m}$
$V_{10} = 7.86 \ kN$	$h_{10} \coloneqq 9$ m
$V_{11} = 7.1 \ kN$	$h_{11} \coloneqq 6$ m
$V_{19} = 5.97 \ kN$	$h_{10} \coloneqq 3 m$

. 12	12
$M_1\!\coloneqq\! N_1\!\cdot\! U_1\!+\! N_2\!\cdot\! U_2$	$+N_3 \cdot U_3 + N_4 \cdot U_4 + N_5 \cdot U_5 + N_6 \cdot U_6 + N_7 \cdot U_7 + N_8 \cdot U_8 + N_9 \cdot U_9 + N_{10} \cdot U_{10} + N_{11} \cdot U_{11} + N_{11} \cdot U_{12} + N_{13} \cdot U_{13} + N_{14} \cdot U_{14} + N_{15} \cdot U_{15} + N_{16} \cdot U_{16} + N_{17} \cdot U_{17} + N_{18} \cdot U_{18} + N_{19} \cdot U_{19} + N_{10} \cdot U_{10} + N_{11} \cdot U_{11}
$M_2 \coloneqq 1.4 \cdot 0.6 \ \left(V_1 \cdot h_1 \cdot h_2 \right)$	$+ V_2 \cdot h_2 + V_3 \cdot h_3 + V_4 \cdot h_4 + V_5 \cdot h_5 + V_6 \cdot h_6 + V_7 \cdot h_7 + V_8 \cdot h_8 + V_9 \cdot h_9 + V_{10} \cdot h_{10} + V_{11} \cdot h_{11} + V_$
1	
$\gamma_z \coloneqq \frac{1}{1 - \frac{M_1}{M_2}} = 1.0$	86
12 PAV VT_Y+	
$U_1 \coloneqq 2.5844 \ \textit{cm}$	$N_1 \coloneqq 210.88 \ kN$
$U_2 \coloneqq 2.5249 \ \textit{cm}$	$N_2 \coloneqq 443.405 \ kN$
$U_3 \coloneqq 2.4328 \ \textit{cm}$	$N_3 = 676.71 \ kN$
$U_4 \coloneqq 2.3049 \ \textit{cm}$	$N_4 = 910.053 \ kN$
$U_5 \coloneqq 2.1403 \ \textit{cm}$	$N_5 \coloneqq 1143.545 \; kN$
$U_6 \coloneqq 1.9399 \ \textit{cm}$	$N_6 \coloneqq 1377.159 \; kN$
$U_7 \coloneqq 1.7056 \ \textit{cm}$	$N_7 \coloneqq 1610.894 \; kN$
$U_8 \coloneqq 1.4392 \ \textit{cm}$	$N_8 \coloneqq 1884.742 \; kN$
$U_9 \coloneqq 1.1437 \ \textit{cm}$	$N_9 \coloneqq 2078.698 \; kN$
$U_{10} = 0.8235$ cm	$N_{10}\!\coloneqq\!2312.755$ kN
$U_{11} = 0.4896 \ cm$	$N_{11} \coloneqq 2546.834 \ kN$
$U_{12}\!\coloneqq\!0.176~{\it cm}$	$N_{12}\!\coloneqq\!2743.792$ kN
$V_1 \coloneqq 5.56 \ \textit{kN}$	$h_1 \coloneqq 36 \; m$
$V_2 \coloneqq 10.88 \ \mathbf{kN}$	h_2 :=33 m
$V_3 \coloneqq 10.62 \text{ kN}$	$h_3 \coloneqq 30 \; \boldsymbol{m}$
$V_4 = 10.35 \ kN$	$h_4 \coloneqq 27$ $m{m}$

$V_5\!\coloneqq\!10.05\; {\it kN}$	$h_5\!\coloneqq\!24$ $m{m}$
$V_6\!:=\!9.72\;{\it kN}$	$h_6\!\coloneqq\!21$ m
$V_7 = 9.35 \text{ kN}$	$h_7 \coloneqq 18$ m
V ₈ :=8.93 kN	$h_8\!\coloneqq\!15$ $m{m}$
$V_9 \coloneqq 8.45 \text{ kN}$	$h_9 \coloneqq 12$ $m{m}$
$V_{10} = 7.86 \ kN$	$h_{10}\!\coloneqq\! 9$ $m{m}$
$V_{11} = 7.1 \ kN$	$h_{11}\!\coloneqq\!6$ $m{m}$
$V_{12} = 5.97 \ kN$	$h_{12} \coloneqq 3$ $m{m}$
$M_1 \coloneqq N_1 \cdot U_1 + N_2 \cdot U_2 + N_3$	$_3 \cdot U_3 + N_4 \cdot U_4 + N_5 \cdot U_5 + N_6 \cdot U_6 + N_7 \cdot U_7 + N_8 \cdot U_8 + N_9 \cdot U_9 + N_{10} \cdot U_{10} + N_{11} \cdot U_{11} + N_{12} \cdot U_{12} + N_{13} \cdot U_{14} + N_{14} \cdot U_{15} + N_{15} \cdot U_{15} +$
$M_2 \coloneqq 1.4 \ \left(V_1 \boldsymbol{\cdot} h_1 + V_2 \boldsymbol{\cdot} h_2 - \right.$	$+V_3 \cdot h_3 + V_4 \cdot h_4 + V_5 \cdot h_5 + V_6 \cdot h_6 + V_7 \cdot h_7 + V_8 \cdot h_8 + V_9 \cdot h_9 + V_{10} \cdot h_{10} + V_{11} \cdot h_{11} + V_{12} \cdot h_{12}$
$\gamma_z \coloneqq \frac{1}{1 - \frac{M_1}{M_2}} = 1.079$	
12 PAV SC_Y+ Est®ic	50
$U_1 \coloneqq 0.8475 \ \textit{cm}$	$N_1 := 220.801 \ kN$
$U_2 \coloneqq 0.8285 \ \textit{cm}$	$N_2\!\coloneqq\!473.862~{\it kN}$
$U_3 \coloneqq 0.7974 \ \textit{cm}$	$N_3 \coloneqq 727.743 \ \mathbf{kN}$
$U_4 \coloneqq 0.7547 \ cm$	$N_4 = 981.707 \ kN$
$U_5 = 0.6998 \ cm$	$N_5 \coloneqq 1235.886 \ kN$
$U_6 \coloneqq 0.6333 \ cm$	$N_6 \coloneqq 1490.274 \; extbf{kN}$
$U_7 \coloneqq 0.556$ cm	$N_7 \coloneqq 1744.888 \ kN$
$U_8 \coloneqq 0.4685 \ \textit{cm}$	$N_8 \coloneqq 1999.742$ kN
$U_9 = 0.3717 \ cm$	$N_9 \coloneqq 2254.851 \ kN$

$U_{10}\!\coloneqq\!0.2668~{\it cm}$ N	₁₀ := 2510.254 kN
$U_{11} = 0.1579 \ cm$ N	₁₁ := 2765.818 kN
$U_{12} = 0.0568 \ cm$ N	₁₂ := 2984.784 kN
$V_1 := 3.16 \ kN$	$h_1 \coloneqq 36 \boldsymbol{m}$
$V_2 \coloneqq 6.12 \ \textit{kN}$	$h_2 \coloneqq 33 \boldsymbol{m}$
$V_3 = 5.91 \; kN$	$h_3 \coloneqq 30 \boldsymbol{m}$
$V_4 = 5.68 \ kN$	$h_4\!\coloneqq\!27$ $m{m}$
$V_5 \!:=\! 5.44 \; kN$	$h_5\!\coloneqq\!24$ $m{m}$
$V_6 = 5.18 \ kN$	$h_6 \coloneqq 21$ m
$V_7 \coloneqq 4.89 \; kN$	$h_7 \coloneqq 18$ m
$V_8\!:=\!4.57\; k\!N$	$h_8\!\coloneqq\!15$ $m{m}$
$V_9\!:=\!4.21\; k\!N$	$h_9\!\coloneqq\!12$ $m{m}$
$V_{10} = 3.78 \ kN$	h_{10} :=9 $m{m}$
$V_{11} = 3.26 \ kN$	$h_{11} \coloneqq 6$ $m{m}$
$V_{12} = 2.52 \ kN$	$h_{12} \coloneqq 3$ $m{m}$
$M := N \cdot II + N \cdot II + N \cdot II$	$S_3 + N_4 \cdot U_4 + N_5 \cdot U_5 + N_6 \cdot U_6 + N_7 \cdot U_7 + N_8 \cdot U_8 + N_9 \cdot U_9 + N_{10} \cdot U_{10} + N_{11} \cdot U_{11} + N_{12} \cdot U_{12}$
$M_1 = N_1 + N_2 + O_2 + N_3 + O_3$	$3+174\cdot 04+175\cdot 05+176\cdot 06+177\cdot 07+178\cdot 08+179\cdot 09+1710\cdot 010+17111\cdot 011+17112\cdot 012$
$M_2 \coloneqq 1.4 \boldsymbol{\cdot} 0.6 \ \left(\boldsymbol{V}_1 \boldsymbol{\cdot} \boldsymbol{h}_1 + \boldsymbol{V}_2 \boldsymbol{\cdot} \boldsymbol{h}_2 \right)$	$+ V_3 \cdot h_3 + V_4 \cdot h_4 + V_5 \cdot h_5 + V_6 \cdot h_6 + V_7 \cdot h_7 + V_8 \cdot h_8 + V_9 \cdot h_9 + V_{10} \cdot h_{10} + V_{11} \cdot h_{11} + V_{12} \cdot h_{12} \rangle$
$\gamma_z \coloneqq \frac{1}{1 - \frac{M_1}{M_2}} = 1.087$	
$\overline{M_2}$	

12 PAV VT_Y+ Est®	tico
$U_1 \coloneqq 1.4133 \ \textit{cm}$	$N_1 = 210.887 \ kN$
$U_2 \coloneqq 1.3807 \ \textit{cm}$	$N_2 \coloneqq 443.415 \; kN$
$U_3 \coloneqq 1.3291 \; cm$	$N_3 = 676.719 \ kN$
$U_4 \coloneqq 1.2578 \ \textit{cm}$	$N_4 = 910.062 \ kN$
$U_5 \coloneqq 1.1663 \; cm$	$N_5 \coloneqq 1143.552 \; kN$
$U_6 = 1.0556 \ cm$	$N_6 \coloneqq 1377.166 \; kN$
$U_7 = 0.9267 \ cm$	$N_7 = 1610.9 \ kN$
$U_8 = 0.7809 \ cm$	$N_8 = 1844.748 \ kN$
$U_9 = 0.6195 \ cm$	$N_9 = 2078.703 \ kN$
$U_{10} = 0.4447 \ cm$	$N_{10}\!\coloneqq\!2312.78~{\it kN}$
$U_{11} = 0.2632 \; cm$	$N_{11} \coloneqq 2546.84 \ kN$
$U_{12} = 0.0943 \ \textit{cm}$	$N_{12}\!\coloneqq\!2743.992~{\it kN}$
$V_1 \coloneqq 3.16 \ \textit{kN}$	$h_1 \coloneqq 36$ m
$V_2 \coloneqq 6.12 \ \textit{kN}$	$h_2 \coloneqq 33$ m
$V_3 = 5.91 \ \textit{kN}$	$h_3 = 30$ m
$V_4 = 5.68 \ kN$	$h_4\!\coloneqq\!27\;m{m}$
$V_5 \coloneqq 5.44 \ kN$	$h_5\!\coloneqq\!24$ m
$V_6 = 5.18 \ kN$	$h_6 \coloneqq 21$ m
$V_7 \coloneqq 4.89 \ \textit{kN}$	$h_7 \coloneqq 18$ m
$V_8\!\coloneqq\!4.57~{\it kN}$	$h_8 \coloneqq 15$ m
$V_9\!\coloneqq\!4.21~\pmb{kN}$	$h_9\!\coloneqq\!12$ m
V ₁₀ :=3.78 kN	$h_{10} \coloneqq 9$ $m{m}$
$V_{11} = 3.26 \ kN$	$h_{11} \coloneqq 6$ $m{m}$

$V_{12} \coloneqq 2.52 \ \textit{kN}$	$h_{12} = 3$ m
$M_1\!\coloneqq\!N_1\!\cdot\!U_1\!+\!N_2\!\cdot\!U_2\!+\!N$	$U_3 \cdot U_3 + N_4 \cdot U_4 + N_5 \cdot U_5 + N_6 \cdot U_6 + N_7 \cdot U_7 + N_8 \cdot U_8 + N_9 \cdot U_9 + N_{10} \cdot U_{10} + N_{11} \cdot U_{11} + N_{12} \cdot U_{10} + N_{11} \cdot U_{11} + N_{12} \cdot U_{12} + N_{12} \cdot U_{12} + N_{12} \cdot U_{12} + N_{12} \cdot U_{12} $
$M_2 \coloneqq 1.4 \ \left(V_1 \boldsymbol{\cdot} h_1 + V_2 \boldsymbol{\cdot} h_2 \right.$	$+V_3 \cdot h_3 + V_4 \cdot h_4 + V_5 \cdot h_5 + V_6 \cdot h_6 + V_7 \cdot h_7 + V_8 \cdot h_8 + V_9 \cdot h_9 + V_{10} \cdot h_{10} + V_{11} \cdot h_{11} + V_{12} \cdot h_{12}$
$\gamma_z \coloneqq \frac{1}{1 - \frac{M_1}{M_2}} = 1.0797$	7
12 PAV SC_Y + Dinar	mico
$U_1 = 0.9423 \ cm$	$N_1 \coloneqq 220.80 \ extbf{\textit{kN}}$
$U_2 = 0.9215 \ cm$	$N_2 \coloneqq 473.862 \ kN$
<i>U</i> ₃ :=0.8876 <i>cm</i>	$N_3\!\coloneqq\!727.742~$ kN
$U_4 = 0.8412 \ cm$	$N_4\!\coloneqq\!981.707~{ extbf{kN}}$
$U_5 = 0.7812 \ cm$	$N_5\!\coloneqq\!1235.886\; {\it kN}$
<i>U</i> ₆ :=0.7082 <i>cm</i>	$N_6\!\coloneqq\!1490.274\; {\it kN}$
$U_7 = 0.6225 \ cm$	$N_7 \coloneqq 1744.888 \; kN$
$U_8 = 0.5248 \ cm$	$N_8 \coloneqq 1999.742 \; kN$
$U_9 = 0.4166 \ cm$	$N_9 \coloneqq 2254.851 \; kN$
$U_{10}\!\coloneqq\!0.2997~{\it cm}$	$N_{10} := 2510.254 \ kN$
$U_{11} = 0.178 \ cm$	$N_{11} \coloneqq 2765.818 \ kN$
$U_{12} = 0.0642 \; cm$	$N_{12} \coloneqq 2984.784 \ kN$
$V_1 = 3.45 \ kN$	$h_1 \coloneqq 36$ m
$V_2 = 6.63 \ kN$	$h_2 \coloneqq 33$ m
V ₃ :=6.2 kN	$h_3 \coloneqq 30 \; m$
$V_4 \coloneqq 6.42 \ kN$	$h_4\!\coloneqq\!27$ $m{m}$

$V_5 = 6.09 \ kN$	$h_5\!\coloneqq\!24$ $m{m}$
$V_6 = 6.06 \ kN$	$h_6\!\coloneqq\!21$ $m{m}$
$V_7 = 6 kN$	$h_7 \coloneqq 18$ m
$V_8 = 5.24 \ kN$	$h_8\!\coloneqq\!15$ m
$V_9 = 4.99 \ kN$	$h_9\!\coloneqq\!12$ m
$V_{10}\!\coloneqq\!4.66~{\it kN}$	$h_{10} \coloneqq 9$ m
$V_{11} = 4.21 \ kN$	$h_{11}\!\coloneqq\!6\;m{m}$
$V_{12} = 3.5 \ \textit{kN}$	$h_{12} \coloneqq 3$ $m{m}$
$M_1\!\coloneqq\!N_1\!\cdot\!U_1\!+\!N_2\!\cdot\!U_2\!+\!N_3\!\cdot\!U_3\!+\!N_3$	$N_4 \cdot U_4 + N_5 \cdot U_5 + N_6 \cdot U_6 + N_7 \cdot U_7 + N_8 \cdot U_8 + N_9 \cdot U_9 + N_{10} \cdot U_{10} + N_{11} \cdot U_{11} + N_{12} \cdot U_{12}$
$M_2 \coloneqq 1.4 \cdot 0.6 \ \left(V_1 \cdot h_1 + V_2 \cdot h_2 + V_1 \cdot h_2 + V_2 \cdot h_2 + V_1 \cdot h_2 \right)$	$V_3 \cdot h_3 + V_4 \cdot h_4 + V_5 \cdot h_5 + V_6 \cdot h_6 + V_7 \cdot h_7 + V_8 \cdot h_8 + V_9 \cdot h_9 + V_{10} \cdot h_{10} + V_{11} \cdot h_{11} + V_{12} \cdot h_{12}$
$\gamma_z \coloneqq \frac{1}{1 - \frac{M_1}{M_2}} = 1.086017$	
12 PAV VT_Y + Dinamico	
$U_1 \coloneqq 1.5714 \; cm$ $N_1 \coloneqq$	= 210.886 kN
$U_2 \coloneqq 1.5355 \; cm$ $N_2 \coloneqq$	= 443.415 kN
$U_3 \coloneqq 1.4794 \; cm$ $N_3 \coloneqq$	= 676.718 kN
$U_4 \coloneqq 1.402 \; extbf{cm} \qquad \qquad N_4 \coloneqq$	=910.06 kN
$U_5 \coloneqq 1.3021 \; cm$ $N_5 \coloneqq$	= 1143.551 <i>kN</i>
$U_6 \coloneqq 1.1803 \; cm$ $N_6 \coloneqq$	= 1377.164 <i>kN</i>
U_7 := 1.0375 cm N_7 :=	= 1610.899 kN
$U_8 := 0.8747 \ \textit{cm}$ $N_8 :=$	= 1844.748 kN
$U_9 := 0.6944 \ {\it cm}$ $N_9 :=$	= 2078.702 kN

$U_{10}\!\coloneqq\!0.4995~{\it cm}$	$N_{10} = 2312$	2.779 kN
$U_{11} = 0.2967$ cm	$N_{11} = 2546$	5.837 kN
$U_{12} = 0.1067$ cm	$N_{12} = 2743$	3.992 kN
$V_1 \coloneqq 3.45 \ \textit{kN}$		$h_1 \coloneqq 36 m$
$V_2 \coloneqq 6.63 \ kN$		$h_2 \coloneqq 33 \; \boldsymbol{m}$
$V_3\!\coloneqq\!6.2~\pmb{kN}$		$h_3 = 30 m$
$V_4\!\coloneqq\!6.42~{\it kN}$		$h_4\!\coloneqq\!27$ m
$V_5 \coloneqq 6.09 \ \textit{kN}$		$h_5 \coloneqq 24$ m
$V_6 \coloneqq 6.06 \ \textit{kN}$		$h_6 \coloneqq 21$ m
$V_7 \coloneqq 6 \ kN$		$h_7 \coloneqq 18 \; \boldsymbol{m}$
$V_8 \coloneqq 5.24 \ \textit{kN}$		$h_8 \coloneqq 15 \boldsymbol{m}$
$V_9 \coloneqq 4.99 \ \textit{kN}$		$h_9 \coloneqq 12$ m
$V_{10} \coloneqq 4.66 \ \mathbf{kN}$		$h_{10} \coloneqq 9$ m
$V_{11} \coloneqq 4.21 \ \textit{kN}$		$h_{11} \coloneqq 6 \boldsymbol{m}$
$V_{12} = 3.5 \ \textit{kN}$		$h_{12} \coloneqq 3$ m
$M = N \cdot II + N \cdot II + I$	N J + N J	
-1v ₁ :-1v ₁ :0 ₁ +1v ₂ :0 ₂ +1	v ₃ ·U ₃ +1v ₄ ·U ₄ -	$+N_5 \cdot U_5 + N_6 \cdot U_6 + N_7 \cdot U_7 + N_8 \cdot U_8 + N_9 \cdot U_9 + N_{10} \cdot U_{10} + N_{11} \cdot U_{11} + N_{12} \cdot U_{10} + N_{11} \cdot U_{11} + N_{12} \cdot U_{11} + N_{13} \cdot U_{11} + N_{14} \cdot U_{11} + N_{14} \cdot U_{11} + N_{15} \cdot U_{12} + N_{$
$M_2 \coloneqq 1.4 \ \left(\boldsymbol{V}_1 \boldsymbol{\cdot} \boldsymbol{h}_1 + \boldsymbol{V}_2 \boldsymbol{\cdot} \boldsymbol{h}_2 \right)$	$_2+V_3 \cdot h_3+V_4 \cdot h_3$	$(h_4 + V_5 \cdot h_5 + V_6 \cdot h_6 + V_7 \cdot h_7 + V_8 \cdot h_8 + V_9 \cdot h_9 + V_{10} \cdot h_{10} + V_{11} \cdot h_{11} + V_{12} \cdot h_{12})$
$\gamma_z \coloneqq \frac{1}{1 - \frac{M_1}{M_2}} = 1.079$		
$1-\frac{1}{M_2}$		