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RESUMO 

 

O presente trabalho tem como tema principal a Base no contexto da Álgebra Linear. A 

principal motivação para sua elaboração foi a dificuldade de alguns alunos de Licenciatura em 

Matemática da UEMA Campus Balsas na compreensão de Base e de outros conteúdos 

relacionados ao tema.  O público alvo desta pesquisa são estudantes da área de exatas que tem 

dificuldade na compreensão de tal assunto. O objetivo fundamental é buscar métodos, 

conceitos e exemplos que melhor possibilitem a sua compreensão.  Para isso, foi realizada 

uma pesquisa bibliográfica onde foram levantados definições de conteúdos prévios, o 

conceito de Base no rigor da Álgebra Linear e também foram expostos exemplos e conceitos 

que pudessem facilitar o entendimento sobre a temática abordada. Foi tomado como 

principais autores: HOWARD ANTON; CHRIS RORRES (2012), ALFRED 

STEINBRUUCH; PAULO WINTERLE (1987), DAVID POOLE (2017) e ANTÔNIO 

SILVA (2007), entre outros autores que abordam o tema.  A comparação com exemplos 

práticos do cotidiano e modos de verificação mais simplificados foi algo que chamou atenção, 

como conceitos positivos que pudessem facilitar a abordagem do tema, possibilitando assim, 

um avanço para que estudantes melhor compreendam um conteúdo abstrato como algo que 

pode ser percebido, verificado e comparado com conceitos vivenciados no cotidiano.  

 

Palavra-chave: Base, Álgebra Linear, melhor compreensão.   

 

 

 

 

 

 

 

 

 



 

ABSTRAT 

 

The main theme of this work is the Basis in the context of Linear Algebra. The main 

motivation for its elaboration was the difficulty of some Mathematics Degree students at 

UEMA Campus Balsas in understanding Base and other contents related to the theme. The 

target audience of this research are students in the area of exact sciences who have difficulty 

understanding this subject. The fundamental objective is to seek methods, concepts and 

examples that better enable its understanding. For this, a bibliographical research was carried 

out where definitions of previous contents were raised, the concept of Base in the rigor of 

Linear Algebra and examples and concepts that could facilitate the understanding of the 

theme addressed were also exposed. It was taken as main authors: HOWARD ANTON; 

CHRIS RORRES (2012), ALFRED STEINBRUUCH; PAULO WINTERLE (1987), DAVID 

POOLE (2017) and ANTÔNIO SILVA (2007), among other authors who address the subject. 

The comparison with practical everyday examples and more simplified verification methods 

was something that drew attention, such as positive concepts that could facilitate the approach 

to the theme, thus enabling a breakthrough for students to better understand an abstract 

content as something that can be perceived, checked and compared with concepts experienced 

in everyday life. 

 
Keywords: Base, Linear Algebra, better understanding. 
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1 INTRODUÇÃO 
   

 Não é de hoje que muitos alunos de cursos de exatas encontram dificuldades em 

conteúdos e conceitos relacionados à Álgebra Linear, que é uma área da Matemática que tem 

grande valor para a sociedade, tendo inúmeras aplicações e tornando-se muito importante para 

setores como medicina e economia. Considerada um segmento que cada vez mais ganha 

destaque no meio acadêmico, com muitas aplicações e diversas possibilidades em diferentes 

áreas das Ciências e na Matemática, sendo uma disciplina comum à maioria das grades 

curriculares da área das Ciências Exatas.   

 Nos cursos de exatas tem grande destaque e em alguns casos pode gerar dificuldades 

para vários discentes. De fato, a Álgebra Linear conta com conceitos que muitas vezes 

envolvem muito o imaginário e a criatividade dos alunos, para que se tenha sucesso no 

processo de aprendizagem. Em vários momentos, conceitos não entendidos, de início, podem 

influenciar negativamente o entendimento de outros conceitos relacionados, o que pode 

prejudicar o desempenho dos estudantes.  

 A experiência em algumas disciplinas relacionadas à Álgebra Linear e a observação 

da dificuldade de alguns alunos do curso de Licenciatura em Matemática da UEMA Campus 

Balsas, na compreensão de alguns conteúdos que envolvem o conceito de Base na Álgebra 

Linear, motivou a presente pesquisa. Foi levado em consideração que muitos discentes tinham 

dificuldades em compreender conteúdos que tinham como eixo principal a necessidade da 

compreensão de Base e também que a literatura disponibiliza explicações consideradas 

limitadas sobre o próprio conceito.  

 A pesquisa tem como objetivo geral: identificar quais aspectos pode favorecer a 

melhor compreensão do conceito de Base no contexto da Álgebra Linear. E como objetivos 

específicos: analisar materiais bibliográficos sobre conceitos gerais da Álgebra Linear e 

definições de Base no contexto da mesma, compreender os principais conceitos dentro da 

Álgebra Linear sobre o tema, bem como sua representação no espaço de várias dimensões e 

determinar aspectos que possam favorecer a compreensão de Base no contexto da Álgebra 

Linear com facilidade. Podendo assim, favorecer aos leitores meios para que possam 

compreender o assunto abordado de forma direta, rápida e eficiente, bem como formas de 

verificação mais simplificadas. 

 A pesquisa é de caráter bibliográfico, utilizando como metodologia principal a 

realização de levantamento sobre o tema. Foi feita a organização de dados, mais 
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especificamente, a organização de definições prévias importantes para a compreensão do 

assunto e a exposição de Base no rigor da Álgebra Linear, finalizando com a exposição de 

conceitos, exemplos, e métodos que possam auxiliar o aprendizado de discentes em relação ao 

tema em questão. 
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2 DEFINIÇÕES 

 Antes de falar sobre Base propriamente dita, será necessário expor algumas 

definições e conceitos da Álgebra Linear, muito utilizados não só no conceito de Base, mas 

também em outros conteúdos. Tais conceitos são de grande importância para o entendimento 

de Base e para isso vamos explorá-los para que possamos chegar ao objetivo principal que é 

identificar quais aspectos podem favorecer a melhor compreensão do tema abordado. Esses 

conceitos e definições serão de grande importância para a compressão de Base e são 

considerados como pré-requisitos para que se fale sobre o referido tema.  

 

2.1 Matrizes  

 As matrizes são um tipo de tabela formado por n linhas e m colunas em que os seus 

elementos são números. Diz-se que a matriz tem ordem ݉ × ݊ (lê-se: ݉ por ݊), em que ݉ ≥ 1 e ݊ ≥ 1. 

2.1.1 Notação geral de uma matriz 

A = [ ܽ11 ܽ12 ܽ13ܽ21⋯ܽ௠1
ܽ22⋯ܽ௠2

ܽ23⋯ܽ௠3
⋯ ܽ1௡⋯⋯⋯ ܽ2௡⋯ܽ௠௡]௠ × ௡ 

 

 A matriz ܣ representa uma matriz qualquer de ordem ݉ × ݊. Um modo simplificado 

de fazer a representação é: ܣ =  [ܽ௜௝]௠×௡, ,݉ ݋݀݊݁ݏ ݊ ∈  ℕ∗ 

Onde: 

 ܽ௜௝: elemento da matriz, sendo que os índices ݅ e ݆ do elemento indicam a posição do 

elemento na matriz. 

 O índice ݅ representa a linha, em que 1 ≤ ݅ ≤ ݉ 

 O índice ݆ representa a coluna, em que 1 ≤ ݆ ≤ ݊ 

Exemplos:  

O elemento ܽ12 (lê-se: ܽ um dois) ocupa a primeira linha e a segunda coluna. 

O elemento ܽ43 (lê-se: ܽ quatro três) ocupa a quarta linha e a terceira coluna.  
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2.1.2 Matriz transposta 

 Dada ܤ uma matriz ݉ × ݊. A transposta de ܤ é a matriz com notação B், ݊ × ݉, tal 

que ܤ௜௝் =  :௝௜. Entãoܤ

ܤ = (ܾ11 ܾ12ܾ21 ܾ22 … ܾ1௡… ܾ2௡⋮ ⋮ܾ௡1 ܾ௡2 ⋱ ⋮… ܾ௡௡) → ்ܤ = (ܾ11 ܾ21ܾ12 ܾ22 … ܾ௡1… ܾ௡2⋮ ⋮ܾ1௡ ܾ2௡ ⋱ ⋮… ܾ௡௡) . 
2.2 Determinantes 

 Determinante de uma matriz quadrada é um número real associado a essa matriz 

segundo alguma regras. 

 Matriz quadrada é a matriz em que o número de linhas é igual ao número de colunas.  

 Sendo a matriz B = [7 81 3], o seu determinante é indicado como: 

det B = |7 81 3| 
2.2.1 Determinante de matriz de 1ª ordem   

 Em uma matriz de 1ª ordem (matriz que possui uma linha e uma coluna) o 

determinante é igual ao número que a forma. 

2.2.2 Determinante de matriz de 2ª ordem 

 Em uma matriz de 2ª ordem (matriz que possui duas linhas e duas colunas) o 

determinante é definido através do produto dos elementos da diagonal principal menos o 

produto dos elementos da diagonal secundária. 

 Seja a matriz A = [ܽ11 ܽ12ܽ21 ܽ22], o determinante da matriz será definido como: 

det A = |ܽ11 ܽ12ܽ21 ܽ22| = ܽ11 ∙  ܽ22 − ܽ12 ∙  ܽ21 

2.2.3 Determinante de matriz de 3ª ordem  

 O determinante de uma matriz de 3ª ordem (matriz que possui três linhas e três 

colunas) pode ser obtido através de uma regra intitulada Regra de Sarrus. 

 Consideremos a matriz: 

A = [ܽ11 ܽ12 ܽ13ܽ21 ܽ22 ܽ23ܽ31 ܽ32 ܽ33] 

Passo 1: reescreva a matriz repetindo a 1° e 2° coluna logo à direita da ultima coluna: 
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ܽ11ܽ21ܽ31
ܽ12ܽ22ܽ32     ܽ13ܽ23ܽ33

ܽ11ܽ21ܽ31
ܽ12ܽ22ܽ23 

Passo 2: efetue a soma dos produtos dos elementos das diagonais principais menos a soma 

dos produtos das diagonais secundárias (diagonais principais indicadas pelas setas vermelhas 

e diagonais secundárias indicadas pelas setas azuis): ܽ11ܽ21ܽ31
ܽ12ܽ22ܽ32     ܽ13ܽ23ܽ33

ܽ11ܽ21ܽ31
ܽ12ܽ22ܽ23 

 

det A  = [(ܽ11 ∙ ܽ22 ∙ ܽ33)+( ܽ12 ∙ ܽ23 ∙ ܽ31)+( ܽ13 ∙ ܽ21 ∙ ܽ23)] –[(ܽ13 ∙ ܽ22 ∙ ܽ31)+( ܽ11 ∙ ܽ23 ∙ܽ32)+( ܽ12 ∙ ܽ21 ∙ ܽ33)] 

2.2.4 Determinante de matriz de 4ª ou mais ordens 

2.2.4.1 O Teorema de Laplace  

 O determinante de uma matriz quadrada de ordem ݊(݊ ≥ 2) é obtida pela soma dos 

produtos dos elementos de qualquer linha ou coluna pelos respectivos cofatores, em que o 

cofator de um elemento ܽ௜௝ de uma matriz quadrada será o resultado do produto (−1)௜+௝ pelo 

determinante ܦ௜௝, conseguido pela eliminação da linha e da coluna do elemento ܽ௜௝: ݂ܿ݋(ܽ௜௝) = (−1)௜+௝  ∙ ௜௝ܦ  

Dada a matriz A de 4° ordem, observe o determinante da matriz obtido através do teorema de 

Laplace: 

A = [ܽ11 ܽ12ܽ21 ܽ22 ܽ13 ܽ14ܽ23 ܽ24ܽ31 ܽ32ܽ41 ܽ42 ܽ33 ܽ34ܽ43 ܽ44] 

 

tomando os elementos da primeira linha, teremos: det(ܣ) = ܽ11 ∙ (−1)1+1 ∙ |ܽ22 ܽ23 ܽ24ܽ32 ܽ33 ܽ34ܽ42 ܽ43 ܽ44| + ܽ12 ∙ (−1)1+2 ∙ |ܽ21 ܽ23 ܽ24ܽ31 ܽ33 ܽ34ܽ41 ܽ43 ܽ44| + ܽ13
∙ (−1)1+3 ∙ |ܽ21 ܽ22 ܽ24ܽ31 ܽ32 ܽ34ܽ41 ܽ42 ܽ44| +ܽ14 ∙ (−1)1+4 ∙ |ܽ21 ܽ22 ܽ23ܽ31 ܽ32 ܽ33ܽ41 ܽ42 ܽ43| 

Logo o determinante da matriz ܣ será dado por: 

 det(ܣ) =  ܽ11 ∙ (11ܽ)݂݋ܿ + ܽ12 ∙ (12ܽ)݂݋ܿ + ܽ13 ∙ (13ܽ)݂݋ܿ + ܽ14 ∙  (14ܽ)݂݋ܿ
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2.2.5 Propriedades dos determinantes  

I) “O determinante de uma matriz ܣ não se altera quando se trocam as linhas pelas colunas.” 

(STEINBRUCH; WINTERLE, 1987, p.433). 

Exemplo:  |ܽ11 ܽ21 ܽ31ܽ12 ܽ22 ܽ32ܽ13 ܽ23 ܽ33| = |ܽ11 ܽ12 ܽ13ܽ21 ܽ22 ܽ23ܽ31 ܽ32 ܽ33| 
 

II) “Se a matriz ܣ possui uma linha (ou coluna) constituída de elementos todos nulos, o 

determinante é nulo.” (STEINBRUCH; WINTERLE, 1987, p.434). 

Exemplo: 

det(ܣ) = |ܽ11 ܽ21 0ܽ12 ܽ22 0ܽ13 ܽ23 0| = 0 

 

III) “Se a matriz ܣ tem duas linhas (ou duas colunas) iguais, o determinante é nulo.” 

(STEINBRUCH; WINTERLE, 1987, p.434). 

Exemplo: det(ܣ) = |ܽ11 ܽ21 ܽ31ܽ11 ܽ21 ܽ31ܽ13 ܽ23 ܽ33| = 0 

 

IV) “Se na matriz ܣ duas linhas (ou colunas) têm seus elementos correspondentes 

proporcionais, o determinante é nulo.” (STEINBRUCH; WINTERLE, 1987, p.435). 

Exemplo: det(ܣ) = |ܽ11 ݇ܽ11ܽ12 ݇ܽ12| = 0 

 

V) “Se na matriz ܣ cada elemento de uma linha (ou coluna) é uma soma de das parcelas, o 

determinante de ܣ pode ser expresso sobre a forma de uma dos determinantes de duas 

matrizes, a saber.” (STEINBRUCH; WINTERLE, 1987, p.435). 

Exemplo: |ܽ1 ܾ1 + ܿ1ܽ2 ܾ2 + ܿ2| = |ܽ1 ܾ1ܽ2 ܾ2| + |ܽ1 ܿ1ܽ2 ܿ2| 
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VI) “O determinante de uma matriz diagonal A (superior ou inferior) é igual ao termo 

principal, isto é, é igual ao produto dos elementos da diagonal principal.” (STEINBRUCH; 

WINTERLE, 1987, p.436). 

Exemplo: det(ܣ) = |ܽ11 ܽ12 ܽ130 ܽ22 ܽ230 0 ܽ33| = ܽ11 ∙ ܽ22 ∙ ܽ33 

 

VII) “Trocando-se entre si duas linhas (ou colunas) na matriz ܣ, o determinante muda de 

sinal, isto é, fica multiplicado por −1.” (STEINBRUCH; WINTERLE, 1987, p.438). 

Exemplo: |ܽ11 ܽ21 ܽ31ܽ12 ܽ22 ܽ32ܽ13 ܽ23 ܽ33| = − |ܽ11 ܽ21 ܽ31ܽ13 ܽ23 ܽ33ܽ12 ܽ22 ܽ32| 
 

VIII) “Quando se multiplicam por um número real todos os elementos de uma linha (ou de 

uma coluna) da matriz ܣ, o determinante fica multiplicado por esse número.” 

(STEINBRUCH; WINTERLE, 1987, p.440). 

Exemplo: |݇ܽ11 ܽ21 ܽ31ܽ12 ݇ܽ22 ݇ܽ32ܽ13 ܽ23 ܽ33 | = ݇ × |ܽ11 ܽ21 ܽ31ܽ12 ܽ22 ܽ32ܽ13 ܽ23 ܽ33| 
 

IX) “Um determinante não se altera quando se somam aos elementos de uma linha (coluna) 

da matriz ܣ os elementos correspondentes de outra linha (coluna) previamente e multiplicados 

por um número real diferente de zero.” (STEINBRUCH; WINTERLE, 1987, p.444). 

Exemplo: |ܽ11 ܽ21 ܽ31ܽ12 ܽ22 ܽ32ܽ13 ܽ23 ܽ33| = | ܽ11 ܽ21 ܽ31ܽ12 + ݇ܽ11 ܽ22 + ݇ܽ21 ܽ32 + ݇ܽ31ܽ13 ܽ23 ܽ33 | 
 

Demonstração apenas do item I: 

 Se A é uma matriz de ordem ݊ e ்ܣ sua transposta, então det ்ܣ  = det  .ܣ
Prova. Utilizando o método de indução finita temos que: 

Para ݊ = 1, a propriedade é válida.  
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 Suponha que a propriedade também é válida para a matriz de ordem ݊ − 1 e 

provemos que será válida também para determinante de ordem ݊. Temos: 

ܣ = (ܽ11 ܽ12ܽ21 ܾ22 … ܽ1௡… ܽ2௡⋮ ⋮ܽ௡1 ܽ௡2 ⋱ ⋮… ܽ௡௡)                         ்ܣ = (ܾ11 ܾ12ܾ21 ܾ22 … ܾ1௡… ܾ2௡⋮ ⋮ܾ௡1 ܾ௡2 ⋱ ⋮… ܾ௡௡) 

Em que ܽ௜௝ =  ௝ܾ௜ , ∀݅ ∈ {1,2, … , ݊} ݁ ∀݆ ∈ {1,2, … , ݊}. det ܣ = ܽ11 ∙ 11ܣ + ܽ21 ∙ 21ܣ + ܽ31 ∙ 31ܣ + ⋯ + ܽ௡1 ∙ ௡1 (pela 1° linha) detܣ ்ܣ = ܾ11 ∙ 11ܤ + ܾ12 ∙ 12ܤ + ܾ13 ∙ 13ܤ + ⋯ + ܾ1௡ ∙  1௡ (pela 1° linha)ܤ

Mas, por definição de matriz transposta, temos: ܽ11 = ܾ11, ܽ21 = ܾ12, ܽ31 = ܾ13, … , ܽ௡1 = ܾ1௡  
E pela hipótese de indução temos: 11ܣ = ,11ܤ 21ܣ = ,12ܤ 31ܣ = ,13ܤ … , ௡1ܣ =  .1௡ܤ
Logo det ்ܣ = det ,݊ Portanto, a propriedade é válida para matrizes de ordem .ܣ ∀݊ ≥ 1.    ∎ 

2.3 Sistemas Lineares  

 Segundo Filho e Silva (2000, p. 352) “chama-se de Sistema Linear a ݊ incógnitas um 

conjunto de duas ou mais equações lineares com ݊ incógnitas.”. 

Exemplos: 

a) { ݔ5 + ݕ = ݔ−0 + ݕ = 12   

 Sistema linear de duas equações e duas incógnitas, onde ݔ e ݕ são incógnitas e 0 ݁ 12 são os termos independentes.   

b) { ݔ − ݕ2 + ݖ = ݔ02 + ݕ − ݖ3 = ݔ54− − ݕ − ݖ =  −1  

 Sistema linear de três equações e três incógnitas, onde ݕ ,ݔ e ݖ são incógnitas e 0, −5 ݁ − 1 são os termos independentes. 

2.3.1 Solução de um sistema linear  

 “Umas solução de um sistema linear é um conjunto de valores que satisfazem ao 

mesmo tempo todas as equações do sistema.” (FILHO e SILVA, 2000, p. 362) 

Exemplo: 

 Para o sistema { ݔ − ݕ = ݔ12 + ݕ3 = 7  
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 Os valores que satisfaz as equações ao mesmo tempo são ݔ =  2 e ݕ =  1. 

 Logo, a solução do sistema de equações é o par ordenado (2, 1). 
2.3.2 Número de soluções de um sistema linear  

Teorema 1: “Um sistemas de equações lineares tem zero, uma ou uma infinidade de 

soluções.” (ANTON; RORRES, 2012, p.60)  

Prova. Se ࢞ܣ =  :é um sistema de equações lineares, vale exatamente uma das afirmações ࢈

(a) o sistema não tem solução, (b) o sistema tem exatamente uma solução ou (c) o sistema tem 

mais de uma solução. A prova estará completa se conseguirmos mostrar que o sistema tem 

uma infinidade de soluções, no caso (c). 

 Suponha que ࢞ܣ = tenha mais de uma solução e seja ࢞0 ࢈ = ࢞1 − ࢞2, onde ࢞1 e ࢞2 

são duas soluções distintas qualquer. Como ࢞1 e ࢞2 são distintas, a matriz ࢞0 é não nula; além 

disso, 0࢞ܣ = 1࢞)ܣ − ࢞2) = 1࢞ܣ  − 2࢞ܣ = ࢈ − ࢈ = ૙ 

Se ݇ for um escalar, então:  1࢞)ܣ − ݇࢞0) = 1࢞ܣ  − (0࢞݇)ܣ = ࢞1 − (0࢞ܣ)݇ = ࢈ − ݇૙ = ࢈ + ૙ =  ࢈

 No entanto, isso significa que ࢞1 − ݇࢞0 é solução ࢞ܣ =  Como ࢞0 é não nula e .࢈

existe uma infinidade de escolhas para ݇, o sistema ࢞ܣ =                 .tem uma infinidade de soluções ࢈

   ∎ 

(ANTON; RORRES, 2012, p.60)  

 Sistemas lineares com duas equações e duas incógnitas são referentes à comparação 

entre a posição de duas retas. 

 Assim podemos destacar três possíveis situações: 

1. As retas podem ser distintas e paralelas, neste caso não haverá interseção entre elas, 

portanto, não existe solução. Esse tipo de sistema é denominado Sistema Impossível (SI) 

e seu determinante é igual a 0.  

2. As retas podem se interceptar em um único ponto, nesse caso o sistema possui 

precisamente uma única solução. Esse tipo de sistema é denominado Sistema Possível e 

Determinado (SPD) e seu determinante é diferente de 0. 

3. As retas sendo coincidentes, existe uma infinidade de pontos que se interceptam e, como 

resultado, o sistema possui infinitas soluções. Esse tipo de sistema é denominado Sistema 

Possível e Indeterminado (SPI) e seu determinante é igual a 0.  
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 Anton e Rorres destacam ainda que em sistemas lineares com três equações e três 

incógnitas os gráficos das equações são planos. As soluções do sistema, caso existam, 

correspondem aos pontos de interseção entre os três planos, em que também haverá três 

possíveis situações: nenhuma solução, uma solução e infinitas soluções. 

2.3.3 Resolvendo sistemas lineares por inversão matricial  

 O teorema a seguir garante, com eficiência, uma fórmula para solucionar um sistema 

linear com ݊ incógnitas e ݊ equações nos casos em que a matriz organizada com os 

coeficientes for invertível. 

Teorema 2: “Se ܣ for uma matriz invertível  ݊ × 1, então para cada matriz b de tamanho ݊ × 1, o sistema de equações ࢞ܣ = ݔ  ,tem exatamente uma solução, a saber ࢈ =  ”.࢈1−ܣ

(ANTON; RORRES, 2012, p.60)  

Prova. Como (࢈1−ܣ)ܣ = ࢞ segue que ,࢈ = ࢞ܣ é solução de ࢈1−ܣ =  Para mostrar que .࢈

essa é a única solução, vamos supor que ࢞0 seja uma solução arbitrária e mostrar que, 

necessariamente, ࢞0 é a solução ࢈1−ܣ. 

 Se ࢞0 for uma solução qualquer, então 0࢞ܣ =  Multiplicando ambos os lados dessa .࢈

equação por 1−ܣ, obtemos 0ݔ =  ∎                                                                                     .࢈1−ܣ

(ANTON; RORRES, 2012, p.60) 

2.3.4 Sistema linear homogêneo  

 “É todo sistema linear em que os coeficientes independentes são todos nulos. Ele 

sempre admite pelo menos a solução trivial (0, 0, … , 0). ” (FILHO e SILVA , 2000, p. 362) 

Exemplo: 

ݔ3   } + ݕ4 − ݖ = ݔ02 + ݕ3 − ݖ3 = ݔ     0 + ݕ + ݖ2 = 0 

 Qualquer sistema homogêneo admite ao menos a solução nula (0, 0, 0,...,0), também 

chamada de solução trivial. Além da solução trivial, um sistema homogêneo pode admitir 

também, outras soluções, chamadas de não triviais.  

2.3.5 Escalonamento de sistemas 

 O escalonamento de sistema linear é um método muito utilizado na resolução de 

sistemas lineares e também para classificação do mesmo. Escalonar um sistema linear é 
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alterar seus termos e equações de uma forma que podemos obter um novo sistema equivalente 

ao inicial, escalonado, e que possuem a mesma solução. 

 Um sistema de equações está escalonado quando: 

 As incógnitas das equações estão todas escritas na mesma ordem; 

 O primeiro elemento diferente de 0 de uma equação, está a esquerda do primeiro elemento 

diferente de 0 da equação seguinte; 

 Caso haja uma linha nula (com todos os elementos nulos), ele deve estar abaixo de todas 

as outras.  

 É importante ressaltar, que na presente pesquisa, será utilizado o escalonamento com 

a associação de um sistema linear com uma matriz, onde os coeficientes das equações do 

sistema podem ser organizados em uma matriz na forma de linhas ou de colunas.   

2.3.6 Regra de Cramer 

Teorema 3: Regra de Cramer : “Se ݔܣ = ܾ for um sistema de n equações lineares em n 

incógnitas tal que det(ܣ) ≠ 0, então o sistema tem uma única solução. Essa solução é 1ݔ = det (1ܣ)det (ܣ) , 2ݔ = det (2ܣ)det (ܣ) , … , ௡ݔ = det (ܣ௡)det (ܣ)  

em que 1ܣ é a matriz obtida substituindo as entradas j-ésima coluna se ܣ pelas entradas da 

matriz   ࢈ = [ܾ1ܾ2⋮ܾ௡].” (ANTON; RORRES, 2012, p.113) 

Prova. Se det(ܣ) ≠ 0, então A é invertível e, pelo Teorema 2, ࢞ = ࢞ܣ é a única solução de ࢈1−ܣ =   .࢈

Tomando a inversa da matriz A utilizando a sua adjunta (1−ܣ = 1det(஺)  ,temos ( (ܣ)݆݀ܽ

࢞ = ࢈1−ܣ = 1det(ܣ) ࢈(ܣ)݆݀ܽ = 1det (ܣ) ܥ11ܥ] 1௡ܥ⋮12
2௡ܥ⋮22ܥ21ܥ

…… …
[௡௡ܥ⋮௡2ܥ௡1ܥ [ܾ1ܾ2⋮ܾ௡] 

Multiplicamos as matrizes, resulta 

࢞ = 1det (ܣ) [ 11ܥ1ܾ + 21ܥ2ܾ + ⋯ + ܾ௡ܥ௡1ܾ112ܥ + 22ܥ2ܾ + ⋯ + ܾ௡ܥ௡2⋮                ⋮                           ⋮ܾ௡1ܥ௡ + 2௡ܥ2ܾ + ⋯ + ܾ௡ܥ௡௡] 

Portanto, a entrada na j-ésima linha de ࢞ é: 
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࢞ = 1௝ܥ1ܾ + 2௝ܥ2ܾ + ⋯ + ܾ௡ܥ௡௝det(ܣ)                                                   (1) 

Seja, agora, 

௝ܣ = [ܽ11ܽ21⋮ܽ௡1
112ܽ22⋮ܽ௡2

…… …
ܽ1௝−1ܽ2௝−1⋮ܽ௡௝−1

ܾ1ܾ2⋮ܾ௡
ܽ1௝+1ܽ2௝+1⋮ܽ௡௝−1

…… …
ܽ1௡ܽ2௡⋮ܽ௡௡] 

Como ܣ௝ difere de ܣ j-ésima coluna, segue que os cofatores das entradas ܾ1, ܾ2, … , ܾ௡ de ܣ௝ 

coincidem com os cofatores das entradas correspondentes da j-ésima coluna de ܣ. A expansão 

em cofatores de ݀݁(ܣ)ݐ ao longo da j-ésima coluna é, portanto, det(ܣ௝) = 1௝ܥ1ܾ + 2௝ܥ2ܾ + ⋯ + ܾ௡ܥ௡௝ 

Substituindo esse resultado em (1), obtemos: ࢞࢐ = det(ܣ௝)det (ܣ)   ∎ 

 (ANTON; RORRES, 2012, p.113)  

2.4 Espaço Vetorial 

 Para Espaço Vetorial Poole define que: 
 
 Seja ܸ um conjunto onde duas operações, denominadas adição e multiplicação por 

escalar, estão estabelecidas. Se ࢛ e ࢜ estão em ܸ, a soma de ࢛ e ࢜ é simbolizada por ࢛ + ࢜, e 

se ܽ é um escalar, o múltiplo escalar de ࢜ por ܽ é simbolizado por ܽ࢜. Se os axiomas a seguir 

são verdadeiros para todo ࢛, ࢜ e ࢝ em ܸ e para todos os escaleres ܽ e ܾ, ܸ é conhecido como 

espaço vetorial e seus elementos são chamados vetores. 

1. ࢛ +  ࢜ está em ܸ.                            Fechamento em relação à adição 

2. ࢛ +  ࢜ =  ࢜ +  ࢛                           Comutatividade 

3. (࢛ +  ࢜)  +  ࢝ =  ࢛ +  (࢜ +  ࢝) Associatividade  

4. Existe um elemento 0 em ܸ, chamado vetor nulo, tal que  ࢛ +  ૙ =  ࢛. 
5. Para cada u em V, existe um elemento – ࢛ em ܸ tal que  ࢛ +  (– ࢛)  =  ૙. 
6. ࢛ܽ está em ܸ.                                   Fechamento em relação á multiplicação por escalar 

7. ܽ(࢛ +  ࢜)  =  ࢛ܽ +  ܽ࢜                   Distributividade  

8. (ܽ +  ܾ)࢛ =  ࢛ܽ +  ܾ࢛                 Distributividade ܽ(ܾ࢛)  =  (ܾܽ)࢛
10. 1࢛ =  ࢛ 
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(POOLE , 2017, p.429) 

2.4.1 Subespaços 

 Poole (2017, p.434) define subespaços como “um subconjunto W de um espaço 
vetorial V é chamado subespaço de V se W é um espaço vetorial com os mesmos escalares, a 
mesma adição e a mesma multiplicação por escalar que V.”. 
 Em ℝn, verificar se um subconjunto W é um subespaço do espaço vetorial envolve 

verificar apenas dois de dez dos axiomas do espaço vetorial. Nesse caso Poole (2017, p.434) 

destaca um teorema que enuncia que se assim sendo um espaço vetorial V e um subconjunto W de V não vazio, então W será um subespaço de V se, e somente se, forem verificadas as 

seguintes condições: 

a. Se ࢛ e ࢜ estão em W, ࢛ +  ࢜ está em W.   

b.  Se ࢛ está em W e a é um escalar, ࢛ܽ está em W. 

2.5 Combinação Linear 

 Steinbruch e Winterle (1987, p. 39) descrevem e exemplificam Combinação Linear 

da seguinte forma: “Sejam os vetores 1ݒ, ,2ݒ … , ,௡ do espaço vetorial ܸ e os escalares ܽ1ݒ ܽ2, … , ܽ௡. Qualquer vetor ݒ ∈  ܸ. = ݒ 1ݒ1ܽ   + 2ݒ2ܽ   + ⋯ + ܽ௡ݒ௡  é um combinação 

linear dos vetores 1ݒ, ,2ݒ … ,  ”௡ݒ

Exemplo: No espaço vetorial P2 dos polinômios de grau ≤ 2, o polinômio ݒ = 2ݔ7 – ݔ11 +   26 é uma combinação linear dos polinômios: 1ݒ  = – 2ݔ5  + ݔ3  2ݒ ݁ 2  = 2ݔ2−   + – ݔ5   8
De fato  ݒ = 1ݒ3    + 2ݒ4 
isto é:  72ݔ + – ݔ11   26 = – 2ݔ5)3  + ݔ3   2)  +  4(– 2ݔ2  + – ݔ5  2ݔ7(8   + – ݔ11   26 = – 2ݔ15  + ݔ9  2ݔ8 – 6   + – ݔ20  2ݔ327  + – ݔ11   26 = 2ݔ7  + – ݔ11   26 

2.5.1 Conjunto Gerador  

 A percepção de conjunto gerador de vetores se confere com facilidade de ℝn a 

espaços vetoriais em geral. Poole (2017, p.438) define que “se ܵ =  {࢜1, ࢜2, … , ࢜௞} é um 

conjunto de vetores em um espaço vetorial ܸ, o conjunto de todas as combinações lineares de 
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࢜1, ࢜2, … , ࢜௞   é chamado conjunto gerador por ݃݁1࢜)ݎ, ࢜2, … , ࢜௞) ou ݃݁ݎ(ܵ), dizemos que ܵ 

é um conjunto gerador de ܸ, e que ܸ é gerado por ܵ.” 

 

2.6 Dependência e Independência Linear  

 De acordo com Anton e Rorres (2012, p.191) se  ܵ = {࢜1, ࢜2, … , ࢜௥} for um conjunto 

não vazio de vetores num espaço vetorial ܸ, então a equação vetorial ݇1࢜1 + ݇2࢜2 + ⋯ + ݇௥࢜௥ = ૙ 

tem uma solução, pelo menos, a saber, ݇1 = 0, ݇2 = 0, … , ݇௥ = 0 

Dizemos que essa é a solução trivial. Se essa for a única solução, dizemos que ܵ é um 

conjunto linearmente independente. Se existem outras soluções além da trivial, dizemos que ܵ é um conjunto linearmente dependente.  

 Para realizar a verificação, podemos organizar esses vetores em uma matriz na forma 

de linha ou de coluna, em que se a matriz for ݊ × ݊ com ݊ ∈ ℕ, calculado o determinante, se 

o resultado obtido for 0, significa que o sistema é linearmente dependente, isso quer dizer que 

se estamos no espaço bidimensional os dois vetores do conjunto tem a mesma inclinação, 

caso o determinante for diferente de 0 o vetores possuem inclinações diferentes.  

 

Figura 1 - Representação de vetores do espaço bidimensional 

Fonte: Anton e Rorres (2012, p.195) 
 

 Caso seja no espaço tridimensional ou mais, com determinante igual a 0, existe 

vetores que estão no mesmo plano. E se o determinante for diferente de 0, os vetores estão em 

planos diferentes. 
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Figura 2 - Representação de vetores do espaço tridimensional 

Fonte: Anton e Rorres (2012, p.195) 

3 BASE E DIMENSÃO 

 Como já foi destacado, os alunos da área de cursos de exatas podem encontrar grande 

dificuldade na compreensão de alguns conteúdos que exijam uma abordagem mais abstrata, 

na Álgebra Linear não é diferente e mais ainda em relação à Base, conceito muito utilizado 

em disciplinas como Álgebra Linear e Estruturas Algébricas, disciplinas estas encontradas em 

cursos de Licenciatura em Matemática, Bacharel em Matemática entre outros. 

 Quando se fala de Base, é importante que se tenha conhecimento que tal conceito 

vem atrelado a ideia de dimensão, e que pode se associar ao nosso meio facilmente, quando 

observamos alguns aspectos geométricos do cotidiano. Quando falamos em uma reta, por 

exemplo, pensamos nessa reta como sendo unidimensional, um plano como bidimensional e o 

espaço como tridimensional. A noção intuitiva de dimensão é de muita importância nesse 

conceito e deve ser relembrada sempre que necessária. 

 Neste tópico será abordado o conceito de Base no rigor da Álgebra Linear, 

destacando seus principais Teoremas, Lemas e Corolários, bem como suas respectivas 

demonstrações, podendo assim observar novos métodos, ferramentas, estratégias e conceitos 

que tenham aplicabilidade para a compreensão do tema.  

 

3.1 Base  

 Anton e Rorres definem Base de um espaço vetorial da seguinte maneira: 

 “Se ܸ for um espaço vetorial qualquer e  ܵ = {࢜1, ࢜2, … , ࢜௡} for um conjunto finito 

de vetores em ܸ, dizemos que ܵ é uma base de ܸ, se valerem as duas condições a seguir. 

(a) ܵ é linearmente independente.  



28 

(b) ܵ gera ܸ.” 

 (ANTON; RORRES, 2012, p.201)  

 Se considerarmos uma base como descrevendo um sistema de coordenadas para um 

espaço vetorial ܸ, então a condição (a) garante que não há inter-relações entre os vetores de 

base, e a condição (b) garante que há vetores de base número suficiente para fornecer 

coordenadas para todos os vetores em ܸ. 

 Na figura 3 cada vetor de base é multiplicado de forma escalar apropriadamente para 

que se somem ao vetor. Um vetor (aqui em 3d, mostrado na seta azul) pode ser reproduzido 

em termos de duas bases diferentes (setas roxas e vermelhas), observe: 

 

Figura 3 - Representação 3d de duas bases no espaço tridimensional  

Fonte: Wikimedia Commons  

 

Teorema 4:  “Seja V um espaço vetorial sobre ℝ ݁  ࢛1, … , ࢛௡ vetores em ܸ tais que ܸ =  { ࢛1, … , ࢛௡}
Então, dentre estes vetores, podemos extrair uma base de ܸ.” (SILVA, 2007, p.51). 

Prova. Se os vetores ࢛1, … , ࢛௡ são ܫܮ, nada há para ser provado. Caso contrário, pelo 

Teorema 4 temos que um destes vetores é combinação linear dos outros, digamos ࢛௡ = 1࢛1ݔ  + ⋯ +  .௡−1࢛௡−1ݔ 
Logo, ܸ = [࢛1, … , ࢛௡] = [࢛1, … , ࢛௡−1]. 
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Se os vetores ࢛1, … , ࢛௡−1 são ܫܮ, nada há para ser provado. Caso contrário, pelo Teorema 4, ࢛௡−1 = 1࢛1ݔ  + ⋯ +  .௡−2࢛௡−2ݔ 
Logo,  ܸ = [࢛1, … , ࢛௡−1] = [࢛1, … , ࢛௡−2]. 
Continuando desta maneira (em no máximo ݊ − 1 etapas), obtemos uma base de ܸ.              ∎ 

(SILVA, 2007, p.51) 

Teorema 5: “Seja V um espaço vetorial sobre  ℝ tal que  ܸ = [࢛1, … , ࢛௠].  
Então todo conjunto com mais de m vetores em ܸ é ܦܮ. Assim, todo conjunto de vetores ܫܮ 

em ܸ possui no máximo m vetores.” (SILVA, 2007, p.52) 

Prova. Como ܸ = [࢛1, … , ࢛௠]. 
Temos pelo Teorema 4, que existe uma base de ܸ dentre os vetores ࢛1, … , ࢛௠. Logo, 

reenumerando, se necessário, podemos supor que: {࢛1, … , ࢛௞}, 

com ݇ ≤ ݉, seja uma base de ܸ. Seja  {࢜1, … , ࢜௡} 

Um conjunto de vetores em ܸ com ݊ > ݉. Com ௝࢜ ∈ ܸ e {࢛1, … , ࢛௞} é uma base de ܸ temos 

que existe ܽ௜௝ ∈ ℝ tais que: 

௝࢜ = ܽ1௝࢛1 + ⋯ + ܽ௞௝࢛௞, ݆ = 1, … , ݊. 
Agora, com a combinação linear  

1࢜1ݔ + ⋯ + ௡࢜௡ݔ = ∑ ௝ݔ ௝࢜௡
௝=1  

= ∑ ௝ݔ (∑ ܽ௜௝࢛௜௞
௜=1 )௡

௝=1  

= ∑ ௝ݔ (∑ ௝ܽ௜௝௡ݔ
௝=1 )௞

௜=1 ࢛௜. 
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Assim,  1࢜1ݔ + ⋯ + ௡࢜௡ݔ = 0 ⟺ ∑ ௝ܽ௜௝ݔ = 0, ݅ = 1, … , ݇,௡
௝=1  

ou seja, basta discutir o sistema homogêneo com ݇ equações e ݊ incógnitas  

∑ ௝ܽ௜௝ݔ = 0, ݅ = 1, … , ݇.௡
௝=1  

Como ݊ > ݉ ≥ ݇ temos que este sistema tem pelo menos uma solução não nula  (1ݕ, … ,  (௡ݕ

Logo,  

૚࢜૚ݕ + ⋯ + ௡࢜௡ݕ = ∑ ௝ݕ ௝࢜ = ∑ (∑ ௝ܽ௜௝௡ݕ
௝=1 ) ࢛௜௞

௜=1
௡

௝=1  

= ∑ 0࢛௜ = ૙௞
௜=1  

Portanto, o conjunto {࢜1, … , ࢜௡} é ܦܮ.                                                                                      ∎                                                                   

(SILVA, 2007, p.52) 

Corolário 1: “Seja V um espaço vetorial de dimensão finita sobre ℝ. Se {࢛1, … , ࢛௠} ݁ {࢜1, … , ࢜௡} 

são duas bases quaisquer de ܸ, então ݉ = ݊.” (SILVA, 2007, p.53) 

Prova.  Como ܸ = [࢛1, … , ࢛௠] ݁ {࢜1, … , ࢜௡} é um conjunto ܫܮ temos, pelo Teorema 5, que ݊ ≤ ݉. Por outro lado, como ܸ = [࢜1, … , ࢜௡] ݁ {࢛1, … , ࢛௠} é um conjunto ܫܮ temos, pelo 

Teorema 5, que ݉ ≤ ݊. Portanto, ݉ = ݊.                                                                              ∎
(SILVA, 2007, p.53) 

 SILVA (2007, p.54) destaca que: 

 Seja ܸ um espaço vetorial de dimensão finita sobre ℝ.  A dimensão de ܸ é o número 

de elementos em alguma base de ܸ e será denotada por ݀݅݉ ܸ ou ݀݅݉ℝ ܸ. Note, pelo 

Corolário 1, que esta definição não depende da base de ܸ, isto é, está bem definida. Quando ܸ =  {૙}, convencionamos que ݀݅݉ ܸ = 0.  
 Seja ܸ um espaço vetorial sobre ℝ ݁ ߙ = {࢛1, … , ࢛௡} um subconjunto qualquer de 

vetores ܸ. O ponto de ߙ é definido por: 

posto(ߙ) = dim[ߙ]. 
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Lema 1: “Seja V um espaço vetorial sobre ℝ. Seja {࢛1, … , ࢛௠}  um subconjunto ܫܮ em  ܸ.  
Então  ࢛ ∈ ܸ − [࢛1, … , ࢛௠] se, somente se, {࢛1, … , ࢛௠, ࢛} é um conjunto ܫܮ.” (SILVA, 2007, 

p.54) 

Prova. Sejam 1ݔ, … , ,௠ݔ 1࢛1ݔ  escalares em ℝ tais que ݕ + ⋯ + ௠࢛௠ݔ + ࢛ݕ = ૙. 
Então ݕ = 0, pois se ݕ ≠ 0, então ࢛ = (− ݕ1ݔ ) ࢛1 + ⋯ + (− ݕ௠ݔ ) ࢛௠ ⇒ ࢛ ∈ [࢛1, … , ࢛௠]  
O que é impossível. Assim ݕ = 0 e  1࢛1ݔ + ⋯ + ௠࢛௠ݔ = ૙. 
Logo, por hipótese, 1ݔ = ⋯ = ௠ݔ = 0. 

Portanto, {࢛1, … , ࢛௠, ࢛} é um conjunto ܫܮ.                                                                              ∎  
(SILVA, 2007, p.54) 

Teorema 6: “Seja V um espaço vetorial de dimensão finita sobre ℝ ݁ ܹ um subespaço de ܸ. 

Então todo conjunto de vetores ܫܮ em  ܹ é parte de uma base de ܹ. ” (SILVA, 2007, p.54) 

Prova. Seja {࢛1, … , ࢛௠} um conjunto ܫܮ em ܹ. Se  ܹ =  [࢛1, … , ࢛௠], 
acabou, caso contrário, existe pelo Lema 1  ࢛௠+1 ∈ ܹ − [࢛1, … , ࢛௠] tal que {࢛1, … , ࢛௠, ࢛௠+1} 

é ܫܮ em ܹ. Se  ܹ = [࢛1, … , ࢛௠, ࢛௠+1], 
acabou. Caso contrário, existe pelo Lema 1 ࢛௠+1 ∈ ܹ − [࢛1, … , ࢛௠, ࢛௠+1] tal que {࢛1, … , ࢛௠, ࢛௠+1, ࢛௠+2} 

é ܫܮ em ܹ. Continuando desta maneira (em no máximo ݀݅݉ ܸ etapas), obtemos o conjunto {࢛1, … , ࢛௠, ࢛௠+1, ࢛௠+2, … , ࢛௡}, 

que é uma base de ܹ.                                                                                                               ∎  
(SILVA, 2007, p.54) 

Corolário 2: “Seja ܸ um espaço vetorial de dimensão finita sobre ℝ.  Se ܹ é um subespaço 

próprio de ܸ, então dim ܹ ≤ dim ܸ . Além disso, se dim ܸ = ݊, então todo conjunto com ݊ 

vetores ܫܮ em ܸ é base de ܸ.” (SILVA, 2007, p.55) 

Prova. Como ܹ ≠ {૙} temos que existe ࢛ em ܹ com ࢛ ≠ ૙. É claro que {࢛} é um conjunto ܫܮ em ܹ. Assim, pelo Teorema 6, existe uma base de ܹ contendo ࢛ e no máximo 
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dim ܸelementos. Logo, dim ܹ ≤ dim ܸ. Com ܹ ⊊ ܸ temos que existe ࢜ ∈ ܸ tal que ݒ ∉ ܹ. 

Assim, acrescentando ࢜ a uma base de ܹ, obtemos um conjunto ܫܮ para ܸ. Portanto, dim ܹ ≤ dim ܸ.                                                                                                                         ∎ 

(SILVA, 2007, p.55) 

Teorema 7: “Seja V um espaço vetorial de dimensão finita sobre ℝ. Se 1ܹ e 2ܹ são 

subespaços de V, então dim( 1ܹ + 2ܹ ) = dim 1ܹ + dim 2ܹ − dim( 1ܹ ∩ 2ܹ). (SILVA, 2007, p.56) 

Prova. Como 1ܹ ∩ 2ܹ é um subespaço de 1ܹ e 2ܹ temos, pelo Teorema 6, que 1ܹ ∩ 2ܹ 

contém uma base  ߙ = {࢛1, … , ࢛࢑} 

que é parte de uma base  ߙ ∪ ߚ onde ,ߚ = {࢜1, … ,  {࢓࢜

de 1ܹ e parte de uma base  ߙ ∪ ߛ onde ,ߛ = {࢝1, … ,  {࢔࢝

de 2ܹ. Note que os conjuntos ߙ,  .são dois a dois disjuntos (confira na Figura 4) ߛ e ߚ

 

Figura 4 - Interseção dos subespaços W1 e W2  

 
Fonte: Silva (2007, p.56) 

Afirmação. O conjunto ߜ = ߙ ∪ ߚ ∪ é base de 1ܹ ߛ + 2ܹ. 

De fato, é claro que o conjunto ߜ gera 1ܹ + 2ܹ. Agora, suponhamos que  

∑ ௜࢛௜௞ݔ
௜=1 + ∑ ௝ݕ ௝࢜௠

௝=1 + ∑ ௟࢝௟௡ݖ
௟=1 = ૙.
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Então: 

− (∑ ௟࢝௟௡ݖ
௟=1 ) = ∑ ௜࢛௜௞ݔ

௜=1 + ∑ ௝ݕ ௝࢜௠
௝=1  ∈ 1ܹ. 

Logo,  − (∑ ௟࢝௟௡ݖ
௟=1 )  ∈  1ܹ ∩ 2ܹ. 

Assim, existem 1ݐ, … , ௞ݐ ∈ ℝ tais que  

− (∑ ௟࢝௟௡ݖ
௟=1 ) = ,1࢛1ݐ … ,  ,௞࢛௞ݐ

Ou seja,  

∑ ௜࢛௜௞ݐ
௜=1 + ∑ ௟࢝௟௡ݖ

௟=1 = ૙. 
Como ߛ é ܫܮ temos que 1ݖ = ⋯ = ௡ݖ  = 0. Logo, 

∑ ௜࢛௜௞ݔ
௜=1 + ∑ ௝ݕ ௝࢜௠

௝=1 = ૙. 
Como ߚ é ܫܮ temos que  1ݔ = ⋯ = ௞ݔ = 1ݕ = ⋯ = ௠ݕ = 0. 
Portanto, ߜ é um conjunto ܫܮ. Logo,  dim 1ܹ + dim 2ܹ = (݉ + ݇) + (݊ + ݇)                                = (݉ + ݊ + ݇) + ݇                                                              = dim( 1ܹ + 2ܹ) + dim( 1ܹ ∩ 2ܹ). ∎ 

(SILVA, 2007, p.56) 
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4 RESULTADOS E DISCUSSÕES 

 Para se falar de Base é fundamental que se tenha conhecimento do real significado da 

palavra. De acordo com o dicionário Priberamn a palavra Base é um substantivo feminino e 

tem alguns significados, entre eles destacam-se os seguintes: “Superfície inferior de um 

corpo, que geralmente serve de apoio. O que serve de apoio, de principio ou fundamento. [...] 

Princípio, origem. [...] Linha que sustenta as outras linhas de uma figura. [...] Que serve de 

referência ou ponto de partida.” (PRIBERAMN, 2008-2021). Nos materiais analisados pode-

se observar a ausência de tais significados, que podem de certa forma esclarecer um pouco 

mais sobre a nomenclatura utilizada no tema.  

 Nesse sentido podemos tomar um exemplo prático do cotidiano para a construção do 

entendimento de Base na Álgebra Linear. A ideia prática para se entender o conceito de Base 

é imaginar nas cores primárias: misturando as cores azul ciano, magenta e amarelo em 

proporções corretas pode-se criar qualquer cor desejada. Dessa mesma forma, uma Base, 

permite de maneira singular, combinar linearmente os seus vetores para obter um vetor 

desejado. Nesse exemplo, podemos comparar a combinação linear, como sendo a mistura de 

cores, as cores primárias como sendo os vetores da Base e a cor final obtida como sendo o 

vetor resultado da combinação de vetores da Base. 

 Observe a figura 5, nela esta representada as cores primárias, a mistura delas e 

algumas das cores que podem ser obtidas como resultado dessa mistura. 

 

Figura 5 - Mistura de cores primarias 

 
Fonte: Wikipédia 
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 Outro exemplo que pode ser citado é o sistema RGB (a sigla se refere ao sistema de 

cores aditivas compostas pelos tons de Vermelho (Red), Verde (Green) e Azul (Blue)). O 

intuito principal do sistema RGB é a reprodução de cores em dispositivos eletrônicos como 

telas de celulares, monitores de TV, Mídias digitais, entre outros.  

 

Figura 6 - Sistemas de cores RGB 

Fonte: Afixgraf 

 
 Particularmente é um padrão de cores que se utiliza de luz para gerar cores, os 

monitores de TV, por exemplo, são constituídos por diversos pontos e esses pontos são 

denominados pixels. Cada pixel detém essas três cores, e o cruzamento delas resultam em 

diversas outras cores, compondo assim as imagens da TV. 

Figura 7 - Representação do pixel na TV 

Fonte: apenas imagens 

 
 Isso quer dizer que cada cor da tela da TV, que podemos observar, pode ser descrita 

como uma combinação dessas três cores. Como pode ser analisada na Figura 6, a cor amarela, 

por exemplo, pode ser obtida pela combinação das cores vermelha e verde e nada da cor azul. 
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No sistema RGB as cores podem ter uma quantidade que pode ir de 0 a 255, no caso do 

exemplo da cor amarela, podemos definir que temos 255 de vermelho, 255 de verde e 0 de 

azul. O editor do programa Paint ilustra bem isso, observe na figura 8. 

 

Figura 8 - Editor de cores do Paint 

Fonte: Autora (2022) 

 
 Então se criarmos uma dimensão com todas as cores possíveis, e se quisermos pegar 

o menor número de cores possíveis de forma que pudéssemos criar todas as outras, 

pegaríamos apenas as cores vermelha, verde e azul. Pois o vermelho, o verde e o azul, são 

base para todas as cores, não havendo necessidade de considerar outra cor, pois qualquer 

outra é combinação linear das três que já temos.  

 Então o que permite que o sistema RGB possa ser a Base do espectro de todas as 

cores que vemos em telas eletrônicas são dois aspectos: o primeiro é que as três cores que 

temos como base (vermelha, verde e azul) são independentes entre si, ou seja, não podemos 

criar o vermelho, por exemplo, como combinação do verde e do azul, independente de qual 

nível de cor seja colocado. Assim, também não se pode criar a cor verde ou azul como 

combinação das outras cores, logo, elas são realmente independentes, pois uma não pode ser 

formada pela combinação das outras. O segundo é que juntas, com diversas combinações 

diferentes podem gerar todas as outras cores. 

 E na Álgebra Linear a Base é exatamente isso que acabamos de ver, ou seja, para que 

um conjunto de vetores seja Base de um espaço vetorial ܸ, eles dever ser ܫܮ (linearmente 

independentes) e dever gerar qualquer vetor de ܸ utilizando os vetores da Base. É o caso do 
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conjunto de vetores {(0,0,1), (0,1,0), (0,0,1)} que é uma base do ℝ3, também chamada de 

base canônica, que é dita como a base mais trivial ou simples de ser encontrada que pode 

gerar um espaço vetorial ou qualquer outra estrutura algébrica, nesse caso essa Base gera 

qualquer vetor no espaço tridimensional. 

 Para provarmos que realmente esse conjunto de vetores é Base do ℝ3 devemos 

seguir os seguintes passos: 

Passo 1: provar que o conjunto de vetores é ܫܮ. 

 Seja ߙ, ߛ ݁ ߚ ∈ ℝ, temos o seguinte sistema: (1,0,0)ߙ + (0,1,0)ߚ + (0,0,1)ߛ = (0,0,0) 

 Nesse caso, para que os três vetores sejam ߙ ,ܫܮ,  devem ser iguais a zero, caso ߛ ݁ ߚ

contrário, se a solução do sistema for qualquer outra solução os vetores não são ܫܮ. 

Resolvendo o sistema temos: (1,0,0)ߙ + (0,1,0)ߚ + (0,0,1)ߛ = ,ߙ) (0,0,0) 0,0) + (0, ,ߚ 0) + (0,0, (ߛ = ,ߙ) (0,0,0) ,ߚ (ߛ = (0,0,0) 

Assim, temos que ߙ = ߚ = ߛ = 0, logo os vetores são LI. 

Passo 2: provar que os vetores podem gerar qualquer vetor do ℝ3. 
Nesse caso vamos tomar um vetor genérico (ݔ, ,ݕ (ݖ ∈ ℝ3 e vamos ver se ele pode ser escrito 

como combinação linear desses três vetores: (ݔ, ,ݕ (ݖ = ܽ(1,0,0) + ܾ(0,1,0) + ,ݔ) (0,0,1)ܿ ,ݕ (ݖ = (ܽ, 0,0) + (0, ܾ, 0) + (0,0, ,ݔ) (ܿ ,ݕ (ݖ = (ܽ, ܾ, ܿ) 

 Isso que dizer que se escrevermos qualquer vetor (ݔ, ,ݕ  como a combinação desses (ݖ

três vetores é só considerar ݔ = ܽ, ݕ = ݖ ݁ ܾ = ܿ. Tomando o vetor (3, 5, 2), como exemplo, 

temos que:  (3, 5, 2) =  3(1,0,0) + 5(0,1,0) + 2(0,0,1) 

Concluímos que, os conjuntos de vetores {(0,0,1), (0,1,0), (0,0,1)} é uma base do ℝ3, pois 

podemos escrever qualquer vetor do ℝ3, utilizando simplesmente os valores de ݔ,  .ݖ ݁ ݕ
 Nos livros e textos analisados pode-se perceber que em geral todos apresentam e 

expressam o conceito de base de forma sucinta, em que o conceito é trabalhado basicamente 

na forma de verificação, ou seja, não exemplificam de forma teórica mais abrangente, nem 

utilizam exemplos que estejam mais próximo da realidade do estudante. Esse modo pode não 

favorecer o entendimento e faz com que o estudante não consiga assimilar de forma mais 
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ativa. Observou-se que a abordagem é de maneira concisa, em que são dadas as condições 

para que um conjunto de vetores seja base e em seguida verificadas, e que também uma 

minoria expressa tal ideia na forma de imagens que possam expressar melhor o conteúdo. 

 Para demostrar melhor esse aspecto observado, acompanhe o seguinte exemplo: 

 Dado o conjunto ܤ = ,1ݒ}  ,2ݒ ,(1,2,3)1ݒ em que {3ݒ  para , (0,0,1)3ݒ ݁ (0,1,2)2ݒ

mostrar que o conjunto ܤ é base do ℝ3, deve-se provar duas condições: primeira que ܤ é ܫܮ  e 

a segunda que qualquer vetor ݒ ∈ ℝ3 pode ser escrito como combinação linear dos vetores de ܤ. Nesse caso a maioria dos livros analisados traz geralmente a seguinte forma de verificação: 

Parte 1: Mostrar que ܤ é Linearmente Independente (LI) 

Para mostrar que o conjunto é ܫܮ deve-se mostrar que ܽ11ݒ + 2ݒ2ܽ + 3ݒ3ܽ = 0 

Admitindo somente a solução ܽ1 = ܽ2 = ܽ3 = 0. 

Com efeito, temos: ܽ1(1,2,3) + ܽ2(0,1,2)+ ܽ3(0,0,1) = (0,0,0) 

E podemos dizer que equivale ao seguinte sistema: 

{ ܽ1+2ܽ2+3ܽ3 = 0           ܽ2 + 2ܽ3 = 0                    ܽ3 = 0   

Escalonando o sistema na forma de matriz coluna, teremos: (1 0 02 1 03 2 1) ⇒ {݈2 = −2݈1 + ݈2݈3 = −3݈1 + ݈3 (1 0 00 1 00 2 1) ⟹ {݈3 = −2݈2 + ݈3 (1 0 00 1 00 0 1) 

Onde {ܽ1+2ܽ2+3ܽ3 = 0           ܽ2 + ܽ3 = 0                    ܽ3 = 0 , equivale à { ܽ1 = 0ܽ2 = 0  ܽ3 = 0   

cuja a única solução é somente a trivial: ܽ1 = ܽ2 = ܽ3 = 0 

Logo ܤ é ܫܮ. 

Parte 2: Para mostrar que ܤ gera ℝ3, deve-se mostrar que qualquer vetor  ݒ = ,ݔ) ,ݕ (ݖ ∈ℝ3 pode ser escrito como combinação linear dos vetores de ܤ, ou seja: ݒ = 1ݒ1ܽ + 2ݒ2ܽ +  3ݒ3ܽ

Em termos de componentes temos o seguinte: (ݔ, ,ݕ (ݖ = ܽ1(1,2,3) + ܽ2(0,1,2)+ ܽ3(0,0,1) 

Nesse caso vamos tomar que ܽ1 = ܽ, ܽ2 = ܾ ݁ ܽ3 = ܿ, para facilitar a visualização dos 

cálculos, assim teremos que: 
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,ݔ) ,ݕ (ݖ = ܽ(1,2,3) + ܾ(0,1,2) + ,ݔ) (0,0,1)ܿ ,ݕ (ݖ = (ܽ, 2ܽ, 3ܽ) + (0, ܾ, 2ܾ) + (0,0, ,ݔ) (ܿ ,ݕ (ݖ = (ܽ, 2ܽ + ܾ, 3ܽ + 2ܾ + ܿ) 

Podemos formar o seguinte sistema {ܽ                    = 2ܽݔ + ܾ          = 3ܽݕ + 2ܾ + ܿ = que pode ser representado pela matriz (1 , ݖ 0 02 1 03 2  .(ݖݕݔ|1

Escalonando a matriz obtemos a seguinte matriz equivalente (1 0 00 1 00 0 1| ݔ2−ݔ + ݔݕ − ݕ2 +  (ݖ

Que equivale dizer ܽ = ,ݔ ܾ = ݔ2− + ܿ ݁ ݕ = ݔ − ݕ2 +  Em que podemos escrever .ݖ

qualquer vetor ݒ = ,ݔ) ,ݕ (ݖ  ∈ ℝ3 da seguinte forma: (ݔ, ,ݕ (ݖ = ܽ(1,2,3) + ܾ(0,1,2) + ,ݔ) (0,0,1)ܿ ,ݕ (ݖ = (1,2,3)ݔ + ݔ2−) + (0,1,2)(ݕ + ݔ) − ݕ2 +  (0,0,1)(ݖ

Logo podemos reescrever qualquer vetor ݒ ∈ ℝ3 como combinação linear dos vetores de ܤ. 

Satisfazendo assim, as duas condições de base, mostrando que B é base do ℝ3. 

 A partir de mais observações pode-se perceber que pelo o Corolário 2 exposto neste 

trabalho, existe uma forma mais simplificada de verificar se um conjunto de vetores é base de 

um espaço vetorial. O Corolário expõe basicamente que se ܸ é um espaço vetorial tal que dim ܸ = ݊, quaisquer ݊ vetores de ܸ linearmente independentes formam uma base de ܸ. 

 Em outras palavras, para verificar se um conjunto de vetores é base de um espaço 

vetorial, basta mostrar que esse conjunto de vetores é linearmente independente, quando a 

dimensão do espaço vetorial é igual à quantidade de vetores.  Nesse caso, a forma mais 

simples será se organizados os vetores em uma matriz na forma de linhas ou colunas, basta 

verificar se o determinantes será diferente de 0. Caso isso aconteça o conjunto de vetores será 

base desse espaço vetorial.  

 Essa forma de verificação é possível pelo fato de que se o determinante de uma 

matriz é diferente de 0, o sistema linear tem solução única, e, no caso significa que os vetores 

organizados na matriz são linearmente independentes, ou seja, admite somente a solução 

trivial e essa solução existe pelo fato de estarmos trabalhando com sistemas homogêneos e 

não existe sistema homogêneo impossível. É importante ressaltar também que os vetores 

podem se organizar na forma de linhas ou de colunas, uma vez que o determinante de uma 

matriz é igual ao determinante da sua matriz transposta, pelas propriedades dos determinantes.  
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 Retomando o exemplo mostrado anteriormente, o conjunto ܤ = ,1ݒ}  ,2ݒ ,(1,2,3)1ݒ com {3ݒ  é base do ℝ3, basta então ܤ Para verificar que o conjunto .(0,0,1)3ݒ ݁ (0,1,2)2ݒ

organizar os vetores em uma matriz (linha ou coluna) e calcular o determinante, acompanhe: det(ܤ) = |1 2 30 1 20 0 1| det ܤ = 1 + 0 + 0 − (0 + 0 + 0) = 1 ≠ 0 

 Como det(ܤ) ≠ 0, conclui-se que o conjunto de vetores é ܫܮ, como temos que ݀݅݉ ℝ3 = 3 e ܤ possui 3 vetores ܫܮ , pelo Corolário 2, temos que B é base do ℝ3. 

 Podemos destacar a seguinte observação segundo Steinbruch e Winterle (1987, p.73-

74): 

 Seja ܸ um espaço vetorial tal que dim ܸ = ݊. Sabemos que o conjunto ܤ é base de 

um espaço vetorial ܸ se ܤ for ܫܮ e se ܤ gera ܸ. No entanto, se soubermos que dim ܸ = ݊, 

para obtermos uma base de ܸ basta que apenas uma das condições de base seja satisfeita. A 

outra condição ocorre naturalmente.  
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5 CONSIDERAÇÕES FINAIS  

 O objetivo deste trabalho foi identificar quais aspectos podem favorecer a melhor 

compreensão do conceito de Base no contexto da Álgebra Linear. Foram Analisados materiais 

bibliográficos sobre conceitos gerais da Álgebra Linear e definições de base no contexto da 

mesma, foram analisados também os principais conceitos sobre o tema, bem como sua 

representação no espaço bi e tridimensional, determinando assim, aspectos que possam 

favorecer a compreensão de Base com facilidade. 

 A álgebra linear é um dos instrumentos mais importantes, polivalente e úteis da 

matemática. Também é apontada como conhecimento fundamental não só para matemáticos, 

mas para vários profissionais, como: engenheiros, físicos, economistas, cientistas da 

computação, biólogos, programadores, estatísticos, entre outros. A Base na Álgebra Linear 

gera muitas dúvidas em alguns estudantes, nesse sentido o tema abordado tem relevância para 

o entendimento de alguns conceitos da Álgebra Linear como Mudança de Base, Rotação, 

Ortogonalidade entre outros conceitos, não exposto nesse trabalho, além de ser integrada a 

outras disciplinas do curso de Matemática e de outros cursos da área de exatas, como cursos 

de engenharia em geral. 

 Após as leituras, analise e realizados os devidos registros, observou-se que de modo 

geral os livros pouco abordam Base de forma mais ilustrativa e simplificada. Apresentam de 

forma concisa e sem tantos detalhes.  Pode-se perceber que não abordam de maneira que 

possam facilitar o entendimento dos estudantes com exemplos práticos e que se aproximem 

do cotidiano habitual, visto que o conceito já é considerado bem abstrato. A comparação com 

exemplos que podem ser percebidos no cotidiano foi algo considerado positivo, pois facilita o 

entendimento de Base. Além de formas mais práticas de verificação, como verificar um 

conjunto de vetores a partir do cálculo de determinante de uma matriz formada pelos vetores.  

 Por fim, é viável considerar que tal tema pode ser compreendido com facilidade com 

exemplificações práticas, visuais e que se aproximem mais do cotidiano. É importante 

ressaltar também que é fundamental o estudo das definições prévias, sendo considerada 

inviável a compreensão de tal tema, sem que se tenha noção de conceitos que o antecedem.  
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