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RESUMO

O presente trabalho tem como tema principal a Base no contexto da Algebra Linear. A
principal motivagdo para sua elaboracao foi a dificuldade de alguns alunos de Licenciatura em
Matemdtica da UEMA Campus Balsas na compreensdo de Base e de outros conteddos
relacionados ao tema. O publico alvo desta pesquisa sdo estudantes da drea de exatas que tem
dificuldade na compreensdo de tal assunto. O objetivo fundamental & buscar métodos,
conceitos e exemplos que melhor possibilitem a sua compreensdo. Para isso, foi realizada
uma pesquisa bibliografica onde foram levantados defini¢des de conteudos prévios, o
conceito de Base no rigor da Algebra Linear e também foram expostos exemplos e conceitos
que pudessem facilitar o entendimento sobre a tematica abordada. Foi tomado como
principais autores: HOWARD ANTON; CHRIS RORRES (2012), ALFRED
STEINBRUUCH; PAULO WINTERLE (1987), DAVID POOLE (2017) e ANTONIO
SILVA (2007), entre outros autores que abordam o tema. A comparacdo com exemplos
praticos do cotidiano e modos de verificacdo mais simplificados foi algo que chamou atengao,
como conceitos positivos que pudessem facilitar a abordagem do tema, possibilitando assim,
um avango para que estudantes melhor compreendam um conteido abstrato como algo que

pode ser percebido, verificado e comparado com conceitos vivenciados no cotidiano.

Palavra-chave: Base, Algebra Linear, melhor compreensao.



ABSTRAT

The main theme of this work is the Basis in the context of Linear Algebra. The main
motivation for its elaboration was the difficulty of some Mathematics Degree students at
UEMA Campus Balsas in understanding Base and other contents related to the theme. The
target audience of this research are students in the area of exact sciences who have difficulty
understanding this subject. The fundamental objective is to seek methods, concepts and
examples that better enable its understanding. For this, a bibliographical research was carried
out where definitions of previous contents were raised, the concept of Base in the rigor of
Linear Algebra and examples and concepts that could facilitate the understanding of the
theme addressed were also exposed. It was taken as main authors: HOWARD ANTON;
CHRIS RORRES (2012), ALFRED STEINBRUUCH; PAULO WINTERLE (1987), DAVID
POOLE (2017) and ANTONIO SILVA (2007), among other authors who address the subject.
The comparison with practical everyday examples and more simplified verification methods
was something that drew attention, such as positive concepts that could facilitate the approach
to the theme, thus enabling a breakthrough for students to better understand an abstract
content as something that can be perceived, checked and compared with concepts experienced

in everyday life.

Keywords: Base, Linear Algebra, better understanding.
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1 INTRODUCAO

Niao é de hoje que muitos alunos de cursos de exatas encontram dificuldades em
contetidos e conceitos relacionados a Algebra Linear, que é uma drea da Matemdtica que tem
grande valor para a sociedade, tendo indmeras aplicacdes e tornando-se muito importante para
setores como medicina e economia. Considerada um segmento que cada vez mais ganha
destaque no meio académico, com muitas aplicagdes e diversas possibilidades em diferentes
dreas das Ciéncias e na Matemadtica, sendo uma disciplina comum a maioria das grades
curriculares da drea das Ciéncias Exatas.

Nos cursos de exatas tem grande destaque e em alguns casos pode gerar dificuldades
para virios discentes. De fato, a Algebra Linear conta com conceitos que muitas vezes
envolvem muito o imagindrio e a criatividade dos alunos, para que se tenha sucesso no
processo de aprendizagem. Em varios momentos, conceitos ndo entendidos, de inicio, podem
influenciar negativamente o entendimento de outros conceitos relacionados, o que pode
prejudicar o desempenho dos estudantes.

A experiéncia em algumas disciplinas relacionadas 2 Algebra Linear e a observagio
da dificuldade de alguns alunos do curso de Licenciatura em Matematica da UEMA Campus
Balsas, na compreensio de alguns contedidos que envolvem o conceito de Base na Algebra
Linear, motivou a presente pesquisa. Foi levado em consideracdo que muitos discentes tinham
dificuldades em compreender conteidos que tinham como eixo principal a necessidade da
compreensdo de Base e também que a literatura disponibiliza explicacdes consideradas
limitadas sobre o préprio conceito.

A pesquisa tem como objetivo geral: identificar quais aspectos pode favorecer a
melhor compreensio do conceito de Base no contexto da Algebra Linear. E como objetivos
especificos: analisar materiais bibliograficos sobre conceitos gerais da Algebra Linear e
defini¢cdes de Base no contexto da mesma, compreender os principais conceitos dentro da
Algebra Linear sobre o tema, bem como sua representacio no espaco de vérias dimensoes e
determinar aspectos que possam favorecer a compreensdo de Base no contexto da Algebra
Linear com facilidade. Podendo assim, favorecer aos leitores meios para que possam
compreender o assunto abordado de forma direta, rdpida e eficiente, bem como formas de
verificacdo mais simplificadas.

A pesquisa € de carater bibliografico, utilizando como metodologia principal a

realizacdo de levantamento sobre o tema. Foi feita a organizacdo de dados, mais
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especificamente, a organizacdo de definicdes prévias importantes para a compreensdo do
assunto e a exposicdo de Base no rigor da Algebra Linear, finalizando com a exposi¢dao de
conceitos, exemplos, e métodos que possam auxiliar o aprendizado de discentes em relagdo ao

tema em questao.
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2 DEFINICOES

Antes de falar sobre Base propriamente dita, serd necessdrio expor algumas
defini¢Ges e conceitos da Algebra Linear, muito utilizados ndo s6 no conceito de Base, mas
também em outros conteidos. Tais conceitos sdo de grande importancia para o entendimento
de Base e para isso vamos explord-los para que possamos chegar ao objetivo principal que é
identificar quais aspectos podem favorecer a melhor compreensdo do tema abordado. Esses
conceitos e definicoes serdo de grande importancia para a compressio de Base e sdo

considerados como pré-requisitos para que se fale sobre o referido tema.

2.1 Matrizes

As matrizes sdo um tipo de tabela formado por n linhas e m colunas em que os seus
elementos sdo numeros. Diz-se que a matriz tem ordem m X n (lé-se: m por n), em que

m=>1len=>1.

2.1.1 Notacao geral de uma matriz

;1 Q412 Qg3 - QAqq
A1 Az Q3 -+ dzpn
A= ..
AGnm1 Amz2 Am3z = Amndy, o

A matriz A representa uma matriz qualquer de ordem m X n. Um modo simplificado

de fazer a representacao é:
A= [aif]mxn’ sendom,n € N*
Onde:
® q;;: elemento da matriz, sendo que os indices i e j do elemento indicam a posi¢do do
elemento na matriz.

e O indicei representa a linha,emque 1 <i <m
e O indice j representa a coluna,emque 1 <j <n
Exemplos:
O elemento a4, (I1€-se: a um dois) ocupa a primeira linha e a segunda coluna.

O elemento a3 (1€-se: a quatro trés) ocupa a quarta linha e a terceira coluna.
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2.1.2 Matriz transposta
Dada B uma matriz m X n. A transposta de B é a matriz com notag¢do BT, n X m, tal

que B; = B;;. Entio:

bll b12 LEX bln b11 bzl s bnl
= P P opre| P P B
bpi bpz .. bpp bin bap ... bpy

2.2 Determinantes

Determinante de uma matriz quadrada € um nimero real associado a essa matriz
segundo alguma regras.

Matriz quadrada € a matriz em que o nimero de linhas € igual ao nimero de colunas.

Sendo a matriz B = [Z g], o seu determinante é indicado como:
7 8
B =
det | 1 3
2.2.1 Determinante de matriz de 1* ordem
Em uma matriz de 1* ordem (matriz que possui uma linha e uma coluna) o

determinante € igual ao nimero que a forma.

2.2.2 Determinante de matriz de 2* ordem

Em uma matriz de 2* ordem (matriz que possui duas linhas e duas colunas) o
determinante € definido através do produto dos elementos da diagonal principal menos o

produto dos elementos da diagonal secundaria.

. . a;; Qg2 . . ., ..
Seja a matriz A = [ a a ] o determinante da matriz sera definido como:
21 22
a1 Qg
det A = |a21 a22| = a11 " azz - a12 * a21

2.2.3 Determinante de matriz de 3* ordem

O determinante de uma matriz de 3* ordem (matriz que possui trés linhas e trés
colunas) pode ser obtido através de uma regra intitulada Regra de Sarrus.

Consideremos a matriz:

a;1 Q12 Qi3
A=|0z1 Az Qz3
az; dzp dsz

Passo 1: reescreva a matriz repetindo a 1° e 2° coluna logo a direita da ultima coluna:
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a;; 412 Q3 G117 Qg2
A1 Qpz Qz3 QA1 dp
a3y 043z dz3 d3z; dz3

Passo 2: efetue a soma dos produtos dos elementos das diagonais principais menos a soma
dos produtos das diagonais secunddrias (diagonais principais indicadas pelas setas vermelhas

e diagonais secunddrias indicadas pelas setas azuis):

det A =[(asg " Azy - az3)+( Qg3 * A3 * A31)+( A1z ° Apg " Az3)] —[(A13 * App ~ Az1)+(Aqq " a3 °

a3)+(ag; " Azq - Az3)]
2.2.4 Determinante de matriz de 4* ou mais ordens
2.2.4.1 O Teorema de Laplace

O determinante de uma matriz quadrada de ordem n(n = 2) € obtida pela soma dos
produtos dos elementos de qualquer linha ou coluna pelos respectivos cofatores, em que o
cofator de um elemento a;; de uma matriz quadrada seré o resultado do produto (=1 pelo
determinante D;;, conseguido pela eliminagdo da linha e da coluna do elemento a;;:

cof (a;;) = (=D - Dy
Dada a matriz A de 4° ordem, observe o determinante da matriz obtido através do teorema de

Laplace:
a1 Q12 A13 Qg4
A= A1 Az Q3 dag
a3y A3z (G333 d3g
Qg1 QAgp Qg3 Qyq

tomando os elementos da primeira linha, teremos:

Q2 dz3 Q4 A1 Q23 Q4
det(4) = aq - (=D [azz azz aAza|+ay, - (—1)12-|az1 A3z Aza| +aq
Ay Q43 Q44 As1 Q43 Qg
Az1 Q2 Q24 az1 Gz 0433
(=DM lazy azz Azl tag, - (-1 |azg aszy asz
Qg1 QAgp Qyq As1 QAuz Qg3

Logo o determinante da matriz A serd dado por:

det(4) = aqq ' cof(as1) + asp - cof (arz) + aqz - cof (as3) + aga - cof (asq)
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2.2.5 Propriedades dos determinantes

I) “O determinante de uma matriz A ndo se altera quando se trocam as linhas pelas colunas.”
(STEINBRUCH; WINTERLE, 1987, p.433).
Exemplo:

ay;; Aqz Qg3
a1 dzz QA3
asz; dzz; dsz

a1 Q1 Q4zq
Q12 Gz a4z
a3 dz3 dzz

IT) “Se a matriz A possui uma linha (ou coluna) constituida de elementos todos nulos, o
determinante € nulo.” (STEINBRUCH; WINTERLE, 1987, p.434).
Exemplo:

a;; az; O
a1, dz; O
a3 azz 0

det(4) = =0

III) “Se a matriz A tem duas linhas (ou duas colunas) iguais, o determinante € nulo.”
(STEINBRUCH; WINTERLE, 1987, p.434).
Exemplo:

a1 Q1 Q4szq
a1 Q1 QAzq
;3 04z3 dszz

det(4) = =0

IV) “Se na matriz A duas linhas (ou colunas) tém seus elementos correspondentes
proporcionais, o determinante € nulo.” (STEINBRUCH; WINTERLE, 1987, p.435).
Exemplo:

a1 kagq

det(4) = 0, kay,

=0

V) “Se na matriz A cada elemento de uma linha (ou coluna) é uma soma de das parcelas, o
determinante de A pode ser expresso sobre a forma de uma dos determinantes de duas
matrizes, a saber.” (STEINBRUCH; WINTERLE, 1987, p.435).

Exemplo:

a, b+c
a, b,+c,

a; by
a, b,

a; ¢
|a2 C2|
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VI) “O determinante de uma matriz diagonal A (superior ou inferior) € igual ao termo
principal, isto €, € igual ao produto dos elementos da diagonal principal.” (STEINBRUCH;
WINTERLE, 1987, p.436).

Exemplo:

a1 A12 Qg3
0 az ap
0 0 ass

det(4) = = Qq1 Az " A33

VII) “Trocando-se entre si duas linhas (ou colunas) na matriz A, o determinante muda de
sinal, isto €, fica multiplicado por —1.” (STEINBRUCH; WINTERLE, 1987, p.438).

Exemplo:

ay;; Q1 d4szg
a3 dQdz3 dzz
a1z Gz a4z

a1 Q1 Qaszy
A2 Az a4z
Qi3 043 dsz

VIII) “Quando se multiplicam por um ndmero real todos os elementos de uma linha (ou de

b

uma coluna) da matriz A, o determinante fica multiplicado por esse numero.’
(STEINBRUCH; WINTERLE, 1987, p.440).

Exemplo:

a1 Q1 04szz
a2 Az a4z
Q13 043 dAsz

a;; A4z asy

kaiz kaz, kasy|=kx

a3 dps ass

IX) “Um determinante ndo se altera quando se somam aos elementos de uma linha (coluna)
da matriz A os elementos correspondentes de outra linha (coluna) previamente e multiplicados
por um numero real diferente de zero.” (STEINBRUCH; WINTERLE, 1987, p.444).

Exemplo:

281 azq asq
a; +kayy ayy, +kay,; asy; +kasy

a;1 4pp dszp
a2 dpp Az
a3 dQdp3 dzz

a3 ass as3

Demonstracao apenas do item I:
Se A é uma matriz de ordem n e AT sua transposta, entdo det A7 = det A.
Prova. Utilizando o método de indugao finita temos que:

Paran = 1, a propriedade € valida.
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Suponha que a propriedade também € vdlida para a matriz de ordem n—1 e

provemos que serd valida também para determinante de ordem n. Temos:

a1 A1z . Qip byy bz . bign

az1 by . agp b b .. b
A= : : - : AT =| 72 T om

ap1 Qpo ... Qun by,i bpy ... bpn

Em que a;; = bj; , Vi € {1,2,..,n}eVj € {1,2,..,n}.
detA =aqq A1 +ayq - Ay +azq - Azg + -+ apq - Apq (pela 1° linha)
detAT =by; Byy + byy " By + byz - Bis + -+ + by, * By, (pela 1° linha)
Mas, por defini¢do de matriz transposta, temos:
@11 = b11, a1 = b13,a31 = by3, ..., Qng = by
E pela hipétese de inducao temos:
Ay1 = B11,Az1 = B1z,431 = By, ..., Apy = Bin.

Logo det AT = det A. Portanto, a propriedade é vélida para matrizes de ordem n,Yn > 1. =
2.3 Sistemas Lineares

Segundo Filho e Silva (2000, p. 352) “chama-se de Sistema Linear a n incégnitas um

conjunto de duas ou mais equagdes lineares com n incognitas.”.

Exemplos:
5 +y=0
2) {—x +y=12

Sistema linear de duas equacdes e duas incdgnitas, onde x e y sdo incognitas e
0 e 12 sdo os termos independentes.

x—2y+z=0
b) {2x+y—3z=—5
4x—y—z= -1

Sistema linear de trés equagOes e trés incognitas, onde x, y € z sdo incognitas €

0, —5 e — 1 sdo os termos independentes.
2.3.1 Solucio de um sistema linear

“Umas solu¢do de um sistema linear ¢ um conjunto de valores que satisfazem ao
mesmo tempo todas as equagdes do sistema.” (FILHO e SILVA, 2000, p. 362)
Exemplo:

x—y=1

Para o sistema {Zx +3y=7
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Os valores que satisfaz as equagdes ao mesmo temposdiox = 2ey = 1.

Logo, a solu¢do do sistema de equagdes € o par ordenado (2, 1).
2.3.2 Numero de solu¢oes de um sistema linear

Teorema 1: “Um sistemas de equacdes lineares tem zero, uma ou uma infinidade de

solugdes.” (ANTON; RORRES, 2012, p.60)

Prova. Se Ax = b € um sistema de equacdes lineares, vale exatamente uma das afirmacdes:

(a) o sistema ndo tem solucgdo, (b) o sistema tem exatamente uma solucdo ou (c) o sistema tem

mais de uma solucdo. A prova estard completa se conseguirmos mostrar que o sistema tem

uma infinidade de solug¢des, no caso (c).

Suponha que Ax = b tenha mais de uma solucdo e seja x, = x; — X, onde x; € X,
sdo duas solugdes distintas qualquer. Como x; e x, sdo distintas, a matriz x, € nio nula; além
disso,

Axy =A(x; —x,) = Ax; —Ax,=b—-b=0

Se k for um escalar, ento:

A(xy —kxy) = Axy — A(kxy) =x; —k(Axy) =b—k0O=b+0=b

No entanto, isso significa que x; — kxy € solugdo Ax = b. Como x, é ndo nula e
existe uma infinidade de escolhas para k, o sistema Ax = b tem uma infinidade de solucdes.

]

(ANTON; RORRES, 2012, p.60)

Sistemas lineares com duas equagdes e duas incOgnitas sdo referentes a comparacao
entre a posi¢cdo de duas retas.

Assim podemos destacar trés possiveis situagdes:

1. As retas podem ser distintas e paralelas, neste caso ndo haverd intersecdo entre elas,
portanto, ndo existe solucdo. Esse tipo de sistema é denominado Sistema Impossivel (SI)
e seu determinante € igual a 0.

2. As retas podem se interceptar em um Unico ponto, nesse caso O sistema possui
precisamente uma unica solugdo. Esse tipo de sistema é denominado Sistema Possivel e
Determinado (SPD) e seu determinante é diferente de O.

3. As retas sendo coincidentes, existe uma infinidade de pontos que se interceptam e, como
resultado, o sistema possui infinitas solu¢des. Esse tipo de sistema € denominado Sistema

Possivel e Indeterminado (SPI) e seu determinante é igual a 0.
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Anton e Rorres destacam ainda que em sistemas lineares com trés equacdes e trés
incognitas os graficos das equacdes sdo planos. As solugdes do sistema, caso existam,
correspondem aos pontos de intersecdo entre os trés planos, em que também haverd trés

possiveis situacdes: nenhuma solug@o, uma solugdo e infinitas solucdes.
2.3.3 Resolvendo sistemas lineares por inversao matricial

O teorema a seguir garante, com eficiéncia, uma férmula para solucionar um sistema
linear com n incégnitas € n equagdes nos casos em que a matriz organizada com os
coeficientes for invertivel.

Teorema 2: “Se A for uma matriz invertivel n X 1, entdo para cada matriz b de tamanho
n X 1, o sistema de equagdes Ax = b tem exatamente uma solugdo, a saber, x = A~1b.”
(ANTON; RORRES, 2012, p.60)

Prova. Como A(A™'b) = b, segue que x = A~!b € solucdo de Ax = b. Para mostrar que
essa € a Unica solugdo, vamos supor que X, seja uma solucdo arbitrdria e mostrar que,
necessariamente, X, € a solucio A~1hb.

Se x, for uma solucdo qualquer, entdo Ax, = b. Multiplicando ambos os lados dessa
equagdo por A1, obtemos x, = A 1h. [ |

(ANTON; RORRES, 2012, p.60)
2.3.4 Sistema linear homogéneo

“E todo sistema linear em que os coeficientes independentes sdo todos nulos. Ele
sempre admite pelo menos a solucdo trivial (0,0, ..., 0).” (FILHO e SILVA , 2000, p. 362)
Exemplo:

3x+4y—z=0
2x+3y—3z=0
x+y+2z=0

Qualquer sistema homogéneo admite ao menos a solucao nula (0, 0, 0,...,0), também
chamada de solucdo trivial. Além da solugdo trivial, um sistema homogéneo pode admitir

também, outras solucdes, chamadas de ndo triviais.
2.3.5 Escalonamento de sistemas

O escalonamento de sistema linear ¢ um método muito utilizado na resolugcdo de

sistemas lineares e também para classificagdo do mesmo. Escalonar um sistema linear é
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alterar seus termos e equagdes de uma forma que podemos obter um novo sistema equivalente
ao inicial, escalonado, e que possuem a mesma solugdo.
Um sistema de equagdes estd escalonado quando:
e Asincdgnitas das equacdes estdo todas escritas na mesma ordem,;
e O primeiro elemento diferente de 0 de uma equacao, estd a esquerda do primeiro elemento
diferente de 0 da equacdo seguinte;
e (Caso haja uma linha nula (com todos os elementos nulos), ele deve estar abaixo de todas
as outras.
E importante ressaltar, que na presente pesquisa, serd utilizado o escalonamento com
a associacdo de um sistema linear com uma matriz, onde os coeficientes das equacdes do

sistema podem ser organizados em uma matriz na forma de linhas ou de colunas.
2.3.6 Regrade Cramer

Teorema 3: Regra de Cramer : “Se Ax = b for um sistema de n equacdes lineares em n

incdgnitas tal que det(A) # 0, entdo o sistema tem uma dnica solugdo. Essa solugao é
det(4,) det(4,) det(4,)
X1 = yXp = v Xp =
det(4) det(A4) det(4)

em que A; € a matriz obtida substituindo as entradas j-ésima coluna se A pelas entradas da
b,
matriz b = b:Z .” (ANTON; RORRES, 2012, p.113)
by
Prova. Se det(4) # 0, entdo A ¢ invertivel e, pelo Teorema 2, x = A~1b € a tinica solucdo de
Ax = b.

1

Tomando a inversa da matriz A utilizando a sua adjunta (A_l ey adj(A) ) temos,
C11 Ca1 Cn1][b1
C C C b
=A"'b = dj(A)b = S |
g @ VP =qam| ¢ T ||
ClTl CZn CTLTL bn
Multiplicamos as matrizes, resulta
b1C11 + b2621 + + annl
1 b1C12 + szzz + b + annZ
X=———— . . .
det(4) : :
anIn + b2C2n + A + anTlTl

Portanto, a entrada na j-ésima linha de x é:
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blclj + szzj + + bTLan
X =

1
det(A4) M
Seja, agora,
ap; 1, .. Qj-1 by M+ agy
A1 Qyp Azj-1 b, Q2j+1 Aon
A] — . . e . : . e R

An1 Qpy; 7 Auj-1 b, Qnpj-1 7 OGmn

Como 4; difere de A j-€sima coluna, segue que os cofatores das entradas by, by, ..., by, de 4;

coincidem com os cofatores das entradas correspondentes da j-ésima coluna de A. A expansdo
em cofatores de det(A) ao longo da j-ésima coluna é, portanto,
det(4;) = byCyj + byCyj + -+ + bypChj
Substituindo esse resultado em (1), obtemos:
_ det(4))
Xj = W

(ANTON; RORRES, 2012, p.113)
2.4 Espaco Vetorial

Para Espaco Vetorial Poole define que:

Seja V um conjunto onde duas operacdes, denominadas adicdo e multiplicacdo por
escalar, estdo estabelecidas. Se u e v estdo em V, a soma de u e v € simbolizada por u + v, e
se a € um escalar, o multiplo escalar de v por a é simbolizado por av. Se os axiomas a seguir
sdo verdadeiros para todo u, v e w em V e para todos os escaleres a e b, VV é conhecido como

espaco vetorial e seus elementos sdo chamados vetores.

1. u + vestaemV. Fechamento em relacdo a adi¢ao

2. ut+v=v+u Comutatividade

3. (u+v) +w=u+ (v + w) Associatividade

4, Existe um elemento 0 em V, chamado vetor nulo, talque u + 0 = u.

5. Para cada u em V, existe um elemento —uem V tal que u + (-u) = 0.

6. auestiem V. Fechamento em relacdo 4 multiplicacdo por escalar
7. a(lu + v) = au + av Distributividade

8. (a + b)u = au + bu Distributividade

0. a(bu) = (ab)u

_.
e

lu = u
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(POOLE , 2017, p.429)
2.4.1 Subespacos

Poole (2017, p.434) define subespacos como “um subconjunto W de um espago
vetorial V € chamado subespaco de V se W € um espaco vetorial com os mesmos escalares, a
mesma adi¢do e a mesma multiplicacio por escalar que V.”.

Em R", verificar se um subconjunto W é um subespago do espaco vetorial envolve

verificar apenas dois de dez dos axiomas do espago vetorial. Nesse caso Poole (2017, p.434)
destaca um teorema que enuncia que se assim sendo um espago vetorial V e um subconjunto
W de V ndo vazio, entdo W serd um subespaco de V se, e somente se, forem verificadas as
seguintes condicoes:

a. Seuevestioem W,u + vestiemW.

b. Se u estaiem W e a € um escalar, au esta em W.
2.5 Combinacao Linear

Steinbruch e Winterle (1987, p. 39) descrevem e exemplificam Combinacdo Linear
da seguinte forma: “Sejam os vetores vq,V,,...,V, do espago vetorial VV e os escalares
ay, ay, ..., a,. Qualquer vetor v € V.v = aqv; + a,v, + -+ a,v, € um combinacio
linear dos vetores vq, vy, ..., Uy~
Exemplo: No espago vetorial P, dos polindmios de grau < 2, o polindmio v = 7x? +
11x - 26 € uma combinacao linear dos polindmios:

v, = 5x?-3x + 2ev, = —2x* + 5x- 8
De fato
v = 3v; + 4v,
isto é:
7x% + 11x - 26 = 3(5x%- 3x + 2) + 4(-2x* + 5x- 8)
7x% 4+ 11x- 26 = 15x%- 9x + 6- 8x% + 20x - 32
7x* + 11x - 26 =7x* + 11x - 26

2.5.1 Conjunto Gerador

A percep¢do de conjunto gerador de vetores se confere com facilidade de R" a
espacos vetoriais em geral. Poole (2017, p.438) define que “se S = {vy,V3,...,V;} é um

conjunto de vetores em um espaco vetorial V, o conjunto de todas as combinagdes lineares de
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V1,Vy, ...,V € chamado conjunto gerador por ger(vy,v,, ..., ;) ou ger(S), dizemos que S

€ um conjunto gerador de V, e que V é gerado por S.”

2.6 Dependéncia e Independéncia Linear

De acordo com Anton e Rorres (2012, p.191) se S = {v4,v,, ..., v,-} for um conjunto

ndo vazio de vetores num espago vetorial I/, entdo a equagdo vetorial

kivy + kv, + -+ kv, =0
tem uma soluc¢do, pelo menos, a saber,

ki =0, ky=0,..,k. =0
Dizemos que essa € a solugdo trivial. Se essa for a unica solucdo, dizemos que S é um
conjunto linearmente independente. Se existem outras solugdes além da trivial, dizemos que
S € um conjunto linearmente dependente.

Para realizar a verificacdo, podemos organizar esses vetores em uma matriz na forma
de linha ou de coluna, em que se a matriz for n X n com n € N, calculado o determinante, se
o resultado obtido for 0, significa que o sistema € linearmente dependente, isso quer dizer que
se estamos no espaco bidimensional os dois vetores do conjunto tem a mesma inclinacgdo,

caso o determinante for diferente de 0 o vetores possuem inclinac¢des diferentes.

Figura 1 - Representagao de vetores do espago bidimensional

A< | Z

()
Y«

(a) Linearmente dependentes (b) Linearmente dependentes (c) Linearmente independentes

Fonte: Anton e Rorres (2012, p.195)

Caso seja no espaco tridimensional ou mais, com determinante igual a 0, existe
vetores que estdo no mesmo plano. E se o determinante for diferente de 0, os vetores estdo em

planos diferentes.
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Figura 2 - Representagéo de vetores do espago tridimensional
ﬁ\ 2 A2

(a) Linearmente dependentes  (b) Linearmente dependentes  (c) Linearmente independentes

Fonte: Anton e Rorres (2012, p.195)

3 BASE E DIMENSAO

Como ja foi destacado, os alunos da drea de cursos de exatas podem encontrar grande
dificuldade na compreensdo de alguns contetidos que exijam uma abordagem mais abstrata,
na Algebra Linear nio é diferente e mais ainda em relagio 2 Base, conceito muito utilizado
em disciplinas como Algebra Linear e Estruturas Algébricas, disciplinas estas encontradas em
cursos de Licenciatura em Matematica, Bacharel em Matematica entre outros.

Quando se fala de Base, € importante que se tenha conhecimento que tal conceito
vem atrelado a ideia de dimensao, e que pode se associar a0 nosso meio facilmente, quando
observamos alguns aspectos geométricos do cotidiano. Quando falamos em uma reta, por
exemplo, pensamos nessa reta como sendo unidimensional, um plano como bidimensional e o
espaco como tridimensional. A nog¢do intuitiva de dimensdao € de muita importancia nesse
conceito e deve ser relembrada sempre que necesséria.

Neste tépico serd abordado o conceito de Base no rigor da Algebra Linear,
destacando seus principais Teoremas, Lemas e Coroldrios, bem como suas respectivas
demonstragdes, podendo assim observar novos métodos, ferramentas, estratégias e conceitos

que tenham aplicabilidade para a compreensao do tema.

3.1 Base

Anton e Rorres definem Base de um espaco vetorial da seguinte maneira:

“Se V for um espago vetorial qualquer e S = {v4,v,, ..., v,} for um conjunto finito
de vetores em V, dizemos que S € uma base de V, se valerem as duas condi¢des a seguir.

(a) S ¢ linearmente independente.
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(by Sgeral.”
(ANTON; RORRES, 2012, p.201)

Se considerarmos uma base como descrevendo um sistema de coordenadas para um
espaco vetorial I/, entdo a condic¢do (a) garante que ndo ha inter-relagdes entre os vetores de
base, e a condi¢do (b) garante que hd vetores de base ndmero suficiente para fornecer
coordenadas para todos os vetores em V.

Na figura 3 cada vetor de base é multiplicado de forma escalar apropriadamente para
que se somem ao vetor. Um vetor (aqui em 3d, mostrado na seta azul) pode ser reproduzido

em termos de duas bases diferentes (setas roxas e vermelhas), observe:

Figura 3 - Representacdo 3d de duas bases no espaco tridimensional

Fonte: Wikimedia Commons

Teorema 4: “Seja V um espaco vetorial sobre R e uy, ..., u, vetores em V tais que
V= {uy,.. uy}
Entdo, dentre estes vetores, podemos extrair uma base de V.” (SILVA, 2007, p.51).
Prova. Se os vetores u4,...,u, sdo LI, nada ha para ser provado. Caso contririo, pelo
Teorema 4 temos que um destes vetores € combinacao linear dos outros, digamos

un == x1u1 R xn_lun_l.
Logo,

V=[uy,..,B u]=I[uqy.. up_q]
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Se os vetores Uy, ..., U,,_1 sa0 LI, nada ha para ser provado. Caso contrério, pelo Teorema 4,

un_l = xlul + -+ xn_zun_z.

Logo,

V= [ul, ey un_l] = [ul, ...,un_z].

Continuando desta maneira (em no maximo n — 1 etapas), obtemos uma base de V. [ |

(SILVA, 2007, p.51)

Teorema 5: “Seja V um espaco vetorial sobre R tal que

V =luq, .., uyl.

Entdo todo conjunto com mais de m vetores em V € LD. Assim, todo conjunto de vetores LI

em V possui no madximo m vetores.” (SILVA, 2007, p.52)
Prova. Como

V=lug, ., U,

Temos pelo Teorema 4, que existe uma base de V' dentre os vetores Uy, ..., U,,. Logo,

reenumerando, se necessario, podemos supor que:

{uq, ..., uy},

com k < m, seja uma base de V. Seja

{vy, ..., v}

Um conjunto de vetores em V com n > m. Com v; € V e {u,,
que existe a;; € R tais que:
'Uj = aljul + -+ akjuk,j = 1,

Agora, com a combinacdo linear

n
xlvl + -+ xnvn = Z XJ‘UJ
=1

..., Uy} € uma base de V temos

, M.
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Assim,

n
X1+ +x,v, =0 Exjaij =0,i=1,..,k,
j=1

ou seja, basta discutir o sistema homogéneo com k equagdes e n incdgnitas

n

ijaij = O,l = 1,...,k.

j=1

Como n > m = k temos que este sistema tem pelo menos uma solu¢do nao nula

V1 s Yn)
Logo,
n k n
Vi1 + o+ YU = z yjvj = z Yjtij | Wi
j=1 i=1 \j=1
K
= Z Ou; =0
i=1
Portanto, o conjunto {vy, ..., v, } é LD. n

(SILVA, 2007, p.52)

Corolario 1: “Seja V um espaco vetorial de dimensao finita sobre R. Se

{uy, ..., ute{vy, ..., v}

sao duas bases quaisquer de V, entdo m = n.” (SILVA, 2007, p.53)

Prova. Como V = [u4,...,u,] e {vy,...,v,} é um conjunto LI temos, pelo Teorema 5, que
n < m. Por outro lado, como V = [v, ..., v,] e {uy, ...,u;,} é um conjunto LI temos, pelo
Teorema 5, que m < n. Portanto, m = n. [}

(SILVA, 2007, p.53)

SILVA (2007, p.54) destaca que:

Seja V um espaco vetorial de dimensao finita sobre R. A dimensdo de IV é o nimero
de elementos em alguma base de V e serd denotada por dimV ou dimg V. Note, pelo
Coroléario 1, que esta definicdo ndo depende da base de V, isto €, estd bem definida. Quando
V' = {0}, convencionamos que dimV = 0.

Seja ¥V um espago vetorial sobre R e @ = {uy, ..., u,} um subconjunto qualquer de
vetores V. O ponto de a € definido por:

posto(a) = dim[a].
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Lema 1: “Seja V um espaco vetorial sobre R. Seja {uy, ..., u;,} um subconjunto LI em V.
Entio u € V — [uy, ..., u,,] se, somente se, {u, ..., U,,, u} é um conjunto LI.” (SILVA, 2007,
p.54)
Prova. Sejam x4, ..., x,,,, y escalares em R tais que

XUy + -+ xpuy, +yu =0.

Entdo y = 0, pois se y # 0, entdo
x X
u= (—yl)ul + -+ (—7m>um S UE [Uy, ..., Uy

O que é impossivel. Assimy = 0e
x1u1 + -+ xmum = 0.

Logo, por hipdétese,

Portanto, {u4, ..., U,,, u} é um conjunto L. ]
(SILVA, 2007, p.54)
Teorema 6: “Seja V um espacgo vetorial de dimensao finita sobre R e W um subespago de V.
Entdo todo conjunto de vetores LI em W € parte de uma base de W.” (SILVA, 2007, p.54)
Prova. Seja {u,, ..., u,,} um conjunto LI em W. Se
W= [ug,.., u,],
acabou, caso contrdrio, existe pelo Lema 1
Uy EW —[uy, ..., uy] tal que {uy, ..., Uy, Uy s1}
¢ Llem W. Se
W = [y, ..., Uy, U yq],
acabou. Caso contrério, existe pelo Lema 1
Upi1 EW — [Uy, ..., Uy, Ui ] tal que {Uq, ..., Uy, U1, Una 2}
€ LI em W. Continuando desta maneira (em no maximo dim V etapas), obtemos o conjunto
{uy, oo, W, W1, Wiy o Un b
que € uma base de W. |
(SILVA, 2007, p.54)
Corolario 2: “Seja V um espaco vetorial de dimensao finita sobre R. Se W é um subespago
proprio de V, entdo dim W < dim V. Além disso, se dim VV = n, entdo todo conjunto com n
vetores LI em V € base de V.” (SILVA, 2007, p.55)
Prova. Como W # {0} temos que existe u em W com u # 0. E claro que {u} é um conjunto

LI em W. Assim, pelo Teorema 6, existe uma base de W contendo u € no maximo
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dim Velementos. Logo, dim W < dim V. Com W & V temos que existe v € V tal que v € W.
Assim, acrescentando v a uma base de W, obtemos um conjunto LI para V. Portanto,
dimW <dimV. |
(SILVA, 2007, p.55)
Teorema 7: “Seja V um espaco vetorial de dimensdo finita sobre R. Se W; e W, sao
subespacos de V, entdo
dim(W; + W, ) = dim W, + dim W, — dim(W; n W5). (SILVA, 2007, p.56)
Prova. Como W; N W, € um subespaco de W; e W, temos, pelo Teorema 6, que W; N W,
contém uma base
a={uy,.., u}

que € parte de uma base

a U f,onde f = {vq, ..., U}
de W, e parte de uma base

aVUy,ondey = {wy,...,wy}

de W,. Note que os conjuntos &, § e ¥ s@o dois a dois disjuntos (confira na Figura 4).

Figura 4 - Intersecéo dos subespacos W, e W,

Fonte: Silva (2007, p.56)

Afirmacio. O conjunto 6 = a U B Uy é base de W; + W,.

De fato, € claro que o conjunto § gera W; + W,. Agora, suponhamos que

k m n
Z Xiu; + Z y]vj + Z ZiW; = 0.
=1



Entao:

n k m
- (Z lel> = Exiui + ij] € Wl-
=1

i=1 j

n
— (Z lel) € Wl N Wz.

=1

Logo,

Assim, existem tq, ..., t; € R tais que

Ou seja,
k n
Z tiu; +Zlel =0
i=1 =1
Como y € LI temos que z; = - = z, = 0. Logo,
k m
inul- +Zijj =0
i=1 j=1
Como S € LI temos que
Xy ==X =y, ==Y = 0.

Portanto, § é um conjunto LI. Logo,
dimW; + dmW, =(m+k)+ (n+ k)
=(m+n+k)+k

(SILVA, 2007, p.56)

33
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4 RESULTADOS E DISCUSSOES

Para se falar de Base é fundamental que se tenha conhecimento do real significado da
palavra. De acordo com o diciondrio Priberamn a palavra Base é um substantivo feminino e
tem alguns significados, entre eles destacam-se os seguintes: “Superficie inferior de um
corpo, que geralmente serve de apoio. O que serve de apoio, de principio ou fundamento. [...]
Principio, origem. [...] Linha que sustenta as outras linhas de uma figura. [...] Que serve de
referéncia ou ponto de partida.” (PRIBERAMN, 2008-2021). Nos materiais analisados pode-
se observar a auséncia de tais significados, que podem de certa forma esclarecer um pouco
mais sobre a nomenclatura utilizada no tema.

Nesse sentido podemos tomar um exemplo pratico do cotidiano para a constru¢ido do
entendimento de Base na Algebra Linear. A ideia pritica para se entender o conceito de Base
¢ imaginar nas cores primdrias: misturando as cores azul ciano, magenta e amarelo em
propor¢des corretas pode-se criar qualquer cor desejada. Dessa mesma forma, uma Base,
permite de maneira singular, combinar linearmente os seus vetores para obter um vetor
desejado. Nesse exemplo, podemos comparar a combinacio linear, como sendo a mistura de
cores, as cores primdrias como sendo os vetores da Base e a cor final obtida como sendo o
vetor resultado da combinacdo de vetores da Base.

Observe a figura 5, nela esta representada as cores primdrias, a mistura delas e

algumas das cores que podem ser obtidas como resultado dessa mistura.

Figura 5 - Mistura de cores primarias

Fonte: Wikipédia
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Outro exemplo que pode ser citado € o sistema RGB (a sigla se refere ao sistema de
cores aditivas compostas pelos tons de Vermelho (Red), Verde (Green) e Azul (Blue)). O
intuito principal do sistema RGB € a reproducdo de cores em dispositivos eletronicos como

telas de celulares, monitores de TV, Midias digitais, entre outros.

Figura 6 - Sistemas de cores RGB

RED
VERMELHO

BLUE
AZUL

GREEN
VERDE

Fonte: Afixgraf

7z

Particularmente € um padrdo de cores que se utiliza de luz para gerar cores, os
monitores de TV, por exemplo, sdo constituidos por diversos pontos € esses pontos sSao
denominados pixels. Cada pixel detém essas trés cores, € o cruzamento delas resultam em

diversas outras cores, compondo assim as imagens da TV.

Figura 7 - Representagéo do pixel na TV

Fonte: apenas imagens

Isso quer dizer que cada cor da tela da TV, que podemos observar, pode ser descrita
como uma combinagdo dessas trés cores. Como pode ser analisada na Figura 6, a cor amarela,

por exemplo, pode ser obtida pela combinagdo das cores vermelha e verde e nada da cor azul.
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No sistema RGB as cores podem ter uma quantidade que pode ir de 0 a 255, no caso do
exemplo da cor amarela, podemos definir que temos 255 de vermelho, 255 de verde e O de

azul. O editor do programa Paint ilustra bem isso, observe na figura 8.

Figura 8 - Editor de cores do Paint
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Fonte: Autora (2022)

Entdo se criarmos uma dimensao com todas as cores possiveis, € se quisermos pegar
o menor nimero de cores possiveis de forma que pudéssemos criar todas as outras,
pegariamos apenas as cores vermelha, verde e azul. Pois o vermelho, o verde e o azul, sdo
base para todas as cores, ndo havendo necessidade de considerar outra cor, pois qualquer
outra € combinacao linear das trés que ja temos.

Entdo o que permite que o sistema RGB possa ser a Base do espectro de todas as
cores que vemos em telas eletronicas sdo dois aspectos: o primeiro € que as trés cores que
temos como base (vermelha, verde e azul) sdo independentes entre si, ou seja, ndo podemos
criar o vermelho, por exemplo, como combinacdo do verde e do azul, independente de qual
nivel de cor seja colocado. Assim, também ndo se pode criar a cor verde ou azul como
combinacdo das outras cores, logo, elas sdo realmente independentes, pois uma ndo pode ser
formada pela combinagdo das outras. O segundo € que juntas, com diversas combinagdes
diferentes podem gerar todas as outras cores.

E na Algebra Linear a Base é exatamente isso que acabamos de ver, ou seja, para que
um conjunto de vetores seja Base de um espaco vetorial V, eles dever ser LI (linearmente

independentes) e dever gerar qualquer vetor de V utilizando os vetores da Base. E o caso do
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conjunto de vetores {(0,0,1),(0,1,0),(0,0,1)} que é uma base do R3, também chamada de
base canénica, que € dita como a base mais trivial ou simples de ser encontrada que pode
gerar um espaco vetorial ou qualquer outra estrutura algébrica, nesse caso essa Base gera
qualquer vetor no espaco tridimensional.

Para provarmos que realmente esse conjunto de vetores é Base do R3 devemos
seguir os seguintes passos:

Passo 1: provar que o conjunto de vetores é LI.

Sejaa,f ey € R, temos o seguinte sistema:

«(1,0,0) + 3(0,1,0) + y(0,0,1) = (0,0,0)

Nesse caso, para que os trés vetores sejam LI, a, f e y devem ser iguais a zero, caso
contrdrio, se a solu¢do do sistema for qualquer outra solu¢do os vetores ndo sdo Ll.
Resolvendo o sistema temos:

«(1,0,0) + 3(0,1,0) + y(0,0,1) = (0,0,0)
(a,0,0) + (0,3,0) + (0,0,y) = (0,0,0)
(a,B,y) = (0,0,0)
Assim, temos que ¢ = = y = 0, logo os vetores sdo LI.
Passo 2: provar que os vetores podem gerar qualquer vetor do R3.
Nesse caso vamos tomar um vetor genérico (x,y,z) € R3 e vamos ver se ele pode ser escrito
como combinacdo linear desses trés vetores:
(x,y,z) = a(1,0,0) + b(0,1,0) + ¢(0,0,1)
(x,v,2z) = (a,0,0) + (0,b,0) + (0,0, ¢)
(x,y,2) = (a,b,c)

Isso que dizer que se escrevermos qualquer vetor (x, y, z) como a combinagdo desses
trés vetores € s6 considerar x = a,y = b e z = ¢. Tomando o vetor (3,5, 2), como exemplo,
temos que:

(3,5,2) = 3(1,0,0) + 5(0,1,0) + 2(0,0,1)
Concluimos que, os conjuntos de vetores {(0,0,1),(0,1,0),(0,0,1)} é uma base do R3, pois
podemos escrever qualquer vetor do R3, utilizando simplesmente os valores de x,y e z.

Nos livros e textos analisados pode-se perceber que em geral todos apresentam e
expressam o conceito de base de forma sucinta, em que o conceito € trabalhado basicamente
na forma de verificagdo, ou seja, ndo exemplificam de forma tedrica mais abrangente, nem
utilizam exemplos que estejam mais préximo da realidade do estudante. Esse modo pode nao

favorecer o entendimento e faz com que o estudante ndo consiga assimilar de forma mais
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ativa. Observou-se que a abordagem ¢ de maneira concisa, em que sdo dadas as condi¢des
para que um conjunto de vetores seja base e em seguida verificadas, e que também uma
minoria expressa tal ideia na forma de imagens que possam expressar melhor o contetddo.

Para demostrar melhor esse aspecto observado, acompanhe o seguinte exemplo:

Dado o conjunto B = {v;,v,,v3} em que v;(1,2,3), v,(0,1,2) e v3(0,0,1) , para
mostrar que o conjunto B é base do R3, deve-se provar duas condi¢des: primeira que B é LI e
a segunda que qualquer vetor v € R3 pode ser escrito como combinagio linear dos vetores de
B. Nesse caso a maioria dos livros analisados traz geralmente a seguinte forma de verificacao:
Parte 1: Mostrar que B € Linearmente Independente (LI)
Para mostrar que o conjunto € LI deve-se mostrar que

a,vy + avy +azvz3 =0
Admitindo somente a solu¢do a; = a, = az = 0.
Com efeito, temos:
a,(1,2,3) + a,(0,1,2)+ a3(0,0,1) = (0,0,0)

E podemos dizer que equivale ao seguinte sistema:

a2+2a3:0

{ a1+2a2+3a3 =0
a3 = 0

Escalonando o sistema na forma de matriz coluna, teremos:

1 0 0 L= —2l 41 ({1 00 1 0 0
2 1 0 =>{2_ P20 1 ol={z;=-2L,+13{0 1 0
l,=-3l, + 15

3 2 1 0 2 1 0 0 1
a1+2a2+3a3 = O al = O
Onde{ a, + a3z = 0, equivale a { a, =0
a3 = 0 a3 = 0

cuja a unica solucdo € somente a trivial:
a,=a,=a3=0
Logo B é LI.
Parte 2: Para mostrar que B gera R3, deve-se mostrar que qualquer vetor v = (x,y,z) €
R3 pode ser escrito como combinacio linear dos vetores de B, ou seja:
V=a.V + ayv, + azvs
Em termos de componentes temos o seguinte:
(x,v,2) = a,(1,2,3) + a,(0,1,2)+ a3(0,0,1)
Nesse caso vamos tomar que a; = a,a, = b e az = ¢, para facilitar a visualizacdo dos

célculos, assim teremos que:
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(x,y,z) = a(1,2,3) + b(0,1,2) + ¢(0,0,1)
(x,v,z) = (a,2a,3a) + (0,b,2b) + (0,0, c)
(x,y,z) =(a,2a+ b,3a+ 2b + )

Podemos formar o seguinte sistema

a =X 1 0 Ofx
{Za +b =¥, que pode ser representado pela matriz <2 1 0 y).
3a+2b+c=z 3 2 1lz
1 0 0 X
Escalonando a matriz obtemos a seguinte matriz equivalente ([0 1 0| —2x +¥
0 0 1lx—2y+z
Que equivale dizer a=x,b =—-2x+yec=x—2y+2z Em que podemos escrever

qualquer vetor v = (x,y,z) € R3 da seguinte forma:
(x,y,z) =a(1,2,3) + b(0,1,2) + ¢(0,0,1)
(x,y,2) =x(1,2,3) + (—2x + y)(0,1,2) + (x — 2y + 2z)(0,0,1)
Logo podemos reescrever qualquer vetor v € R3 como combinagio linear dos vetores de B.
Satisfazendo assim, as duas condi¢des de base, mostrando que B € base do R3.

A partir de mais observacdes pode-se perceber que pelo o Coroldrio 2 exposto neste
trabalho, existe uma forma mais simplificada de verificar se um conjunto de vetores € base de
um espacgo vetorial. O Corolédrio expde basicamente que se V € um espacgo vetorial tal que
dim V = n, quaisquer n vetores de V linearmente independentes formam uma base de V.

Em outras palavras, para verificar se um conjunto de vetores € base de um espaco
vetorial, basta mostrar que esse conjunto de vetores € linearmente independente, quando a
dimensdo do espaco vetorial € igual a quantidade de vetores. Nesse caso, a forma mais
simples serd se organizados os vetores em uma matriz na forma de linhas ou colunas, basta
verificar se o determinantes serd diferente de 0. Caso isso aconteca o conjunto de vetores sera
base desse espago vetorial.

Essa forma de verificacdo € possivel pelo fato de que se o determinante de uma
matriz € diferente de 0, o sistema linear tem solu¢do Unica, e, no caso significa que os vetores
organizados na matriz sdo linearmente independentes, ou seja, admite somente a solucdo
trivial e essa solucdo existe pelo fato de estarmos trabalhando com sistemas homogéneos e
ndo existe sistema homogéneo impossivel. E importante ressaltar também que os vetores
podem se organizar na forma de linhas ou de colunas, uma vez que o determinante de uma

matriz € igual ao determinante da sua matriz transposta, pelas propriedades dos determinantes.
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Retomando o exemplo mostrado anteriormente, o conjunto B = {v;,v,,v3} com
v,(1,2,3), 1,(0,1,2) e v3(0,0,1). Para verificar que o conjunto B é base do R3, basta entdo

organizar os vetores em uma matriz (linha ou coluna) e calcular o determinante, acompanhe:

1 2 3
det(B)=[0 1 2
00 1

detB=14+04+0—-(0+0+0)=1=+0

Como det(B) # 0, conclui-se que o conjunto de vetores ¢ LI, como temos que
dim R3 = 3 e B possui 3 vetores LI , pelo Coroldrio 2, temos que B € base do R3.

Podemos destacar a seguinte observacdo segundo Steinbruch e Winterle (1987, p.73-
74):

Seja V um espaco vetorial tal que dimV = n. Sabemos que o conjunto B € base de
um espaco vetorial V' se B for LI e se B gera V. No entanto, se soubermos que dimV = n,
para obtermos uma base de V' basta que apenas uma das condicdes de base seja satisfeita. A

outra condi¢@o ocorre naturalmente.
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5 CONSIDERACOES FINAIS

O objetivo deste trabalho foi identificar quais aspectos podem favorecer a melhor
compreensio do conceito de Base no contexto da Algebra Linear. Foram Analisados materiais
bibliograficos sobre conceitos gerais da Algebra Linear e definicdes de base no contexto da
mesma, foram analisados também os principais conceitos sobre o tema, bem como sua
representacdo no espago bi e tridimensional, determinando assim, aspectos que possam
favorecer a compreensdo de Base com facilidade.

A dlgebra linear € um dos instrumentos mais importantes, polivalente e uteis da
matematica. Também € apontada como conhecimento fundamental ndo s6 para matemaéticos,
mas para vdrios profissionais, como: engenheiros, fisicos, economistas, cientistas da
computagdo, bilogos, programadores, estatisticos, entre outros. A Base na Algebra Linear
gera muitas duvidas em alguns estudantes, nesse sentido o tema abordado tem relevancia para
o entendimento de alguns conceitos da Algebra Linear como Mudanca de Base, Rotagdo,
Ortogonalidade entre outros conceitos, ndo exposto nesse trabalho, além de ser integrada a
outras disciplinas do curso de Matemadtica e de outros cursos da drea de exatas, como cursos
de engenharia em geral.

ApOs as leituras, analise e realizados os devidos registros, observou-se que de modo
geral os livros pouco abordam Base de forma mais ilustrativa e simplificada. Apresentam de
forma concisa e sem tantos detalhes. Pode-se perceber que ndo abordam de maneira que
possam facilitar o entendimento dos estudantes com exemplos priticos € que se aproximem
do cotidiano habitual, visto que o conceito ja é considerado bem abstrato. A comparagdo com
exemplos que podem ser percebidos no cotidiano foi algo considerado positivo, pois facilita o
entendimento de Base. Além de formas mais praticas de verificagdo, como verificar um
conjunto de vetores a partir do calculo de determinante de uma matriz formada pelos vetores.

Por fim, € vidvel considerar que tal tema pode ser compreendido com facilidade com
exemplificacdes praticas, visuais e que se aproximem mais do cotidiano. E importante
ressaltar também que € fundamental o estudo das definicdes prévias, sendo considerada

invidvel a compreensdo de tal tema, sem que se tenha no¢ao de conceitos que o antecedem.
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