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RESUMO

Este trabalho tem como objetivo apresentar uma abordagem das Equações Diferenciais

Ordinárias (EDO) aplicadas em circuitos elétricos. Inicialmente, é feito um resgate

histórico do desenvolvimento das equações diferenciais e do eletromagnetismo, destacando

contribuições de cientistas como Newton, Leibniz, Euler e Maxwell. O estudo se aprofunda

na classificação das equações diferenciais quanto ao tipo, ordem e linearidade, além de

apresentar métodos de resolução como separação de variáveis, fator integrante e uso da

equação característica. Na parte aplicada, são analisados elementos de circuitos elétricos

(resistores, capacitores, indutores) e suas relações com as EDOs, evidenciando como

a modelagem matemática contribui para compreender e resolver problemas físicos e

tecnológicos. A pesquisa adota uma abordagem bibliográfica e exploratória, baseada em

autores clássicos e contemporâneos.

Palavras-chave: Equações diferenciais ordinárias. Circuitos elétricos. Modelagem

matemática. Física aplicada.



ABSTRACT

This work aims to present an approach to Ordinary Differential Equations (ODEs) applied

to electrical circuits. Initially, a historical overview of the development of differential

equations and electromagnetism is provided, highlighting contributions from scientists

such as Newton, Leibniz, Euler, and Maxwell. The study delves into the classification

of differential equations regarding type, order, and linearity, in addition to presenting

solution methods such as separation of variables, integrating factor, and the use of the

characteristic equation. In the applied section, elements of electrical circuits (resistors,

capacitors, inductors) and their relationships with ODEs are analyzed, demonstrating how

mathematical modeling contributes to understanding and solving physical and technological

problems. The research adopts a bibliographic and exploratory approach, based on classical

and contemporary authors.

Keywords: Ordinary Differential Equations. Electrical Circuits. Mathematical Modeling.

Applied Physics.
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1 INTRODUÇÃO

As equações diferenciais (EDs) desempenham uma função fundamental na

modelagem Matemática, sendo constantemente utilizadas em cursos de exatas como

Matemática, Física, Química e Engenharia. Sua importância tem como objetivo aprimorar

cálculos e realizar análises mais detalhadas de seus processos e comportamento. No entanto,

as EDs não se restringem apenas ao campo das exatas, tendo uma vasta utilidade em outras

áreas do conhecimento, como Biologia, Medicina e outras ciências. O que as transforma em

uma ferramenta indispensável para a humanidade, proporcionando uma base Matemática

que constitui em conhecimento mútuo sobre o processo dinâmico que ocorre na natureza e

na sociedade, o que traz mudanças significativas e interações complexas, resultando em

progressos científicos e tecnológicos.

Diante disso, com a crescente presença de dispositivos eletrônicos em nosso

cotidiano, seja em nossas casas ou trabalho, mostra que estamos rodeados de tecnologia.

Desse modo, compreender os princípios que regem o funcionamento dos circuitos elétricos

tornou-se uma habilidade cada vez mais valorizada, tanto na formação acadêmica quanto

na prática profissional. Os circuitos elétricos representam sistemas físicos que envolvem

componentes como resistores, capacitores e indutores, os quais, quando organizados em

um circuito, obedecem a leis fundamentais da Física, como as Leis de Ohm e de Kirchhoff.

No entanto, o comportamento dinâmico dessas estruturas, especialmente em situações com

fontes variáveis de corrente ou tensão, exige um tratamento matemático mais profundo,

no qual as equações diferenciais ordinárias desempenham papel essencial.

As equações diferenciais possibilitam a modelagem de sistemas que evoluem

com o decorrer do tempo, fornecendo uma descrição precisa das variações de grandezas

elétricas, como corrente e tensão. Em especial, os circuitos do tipo RC, RL e RLC, que

envolvem elementos com capacidade de armazenar energia, são classicamente estudados

com base em equações diferenciais de primeira ou segunda ordem. O estudo desses circuitos

permite ao futuro professor ou profissional da Matemática reconhecer na prática a potência

das ferramentas matemáticas na resolução de problemas concretos.

Além da aplicação prática, este trabalho reforça a relação entre a Matemática

e áreas como a Física. A interdisciplinaridade favorece uma aprendizagem mais integrada

e significativa. Ao abordar equações diferenciais aplicadas aos circuitos elétricos, busca-se

superar abordagens didáticas que tratam a Matemática de forma isolada.

Desse modo, a presente pesquisa tem como objetivo compreender o estudo

das equações diferenciais ordinárias (EDOs). Para alcançar este propósito, o trabalho

se propõe a cumprir os seguintes objetivos específicos: mostrar o contexto histórico das

equações diferenciais e do eletromagnetismo; classificar os diferentes tipos de equações

diferenciais; e demonstrar estratégias metodológicas eficazes para facilitar a compreensão

e o domínio das Equações Diferenciais Ordinárias (EDOs) aplicada em circuitos elétricos.
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Portanto, a proposta central deste estudo vai além da resolução de equações ou

da apresentação de circuitos. Ela se ancora na valorização do conhecimento matemático

como linguagem universal da ciência, capaz de interpretar fenômenos naturais e tecnológicos

com clareza e precisão. Acredita-se que essa abordagem contextualizada, que alia teoria,

história e aplicação, possa inspirar o leitor a enxergar a Matemática não apenas como um

conjunto de fórmulas, mas como ferramenta para compreender e transformar a realidade.
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2 EQUAÇÕES DIFERENCIAIS ATRAVÉS DA HISTÓRIA

A história das equações diferenciais, segundo diversos estudos, teve início no

século XVII, com as contribuições de Isaac Newton (1642–1727) e Gottfried Wilhelm

Leibniz (1646–1716), considerados os pioneiros e formuladores dessa importante ferramenta

matemática, cuja aplicação se mostrou fundamental para o avanço da ciência e da

humanidade. No entanto, conforme destaca Bassanezi e Ferreira Jr. (1988), as equações

diferenciais já vinham sendo desenvolvidas, ainda que de forma inicial, por estudiosos

anteriores a Newton e Leibniz, por meio de investigações voltadas à mecânica. Fenômenos

como a rotação dos planetas, a oscilação de pêndulos e o movimento de queda livre já

eram objeto de análise por cientistas como Leonardo da Vinci (1452–1519), Johannes

Kepler (1571–1630), Galileu Galilei (1564–1642) e Christiaan Huygens (1629–1695). Apesar

dessas contribuições significativas, ainda faltavam, à época, conceitos matemáticos mais

sofisticados que permitissem a modelagem precisa desses fenômenos. Lacuna essa que foi

suprida com os avanços promovidos por Newton e Leibniz.

Newton e Leibniz tiveram grandes contribuições no estudo das equações

diferenciais. Por meio deles foram desenvolvidas novas maneiras de derivação e integração.

Newton, em particular, destacou-se ao classificá-las como equações de primeira ordem,

considerando três formas distintas:

dy

dx
= f(x) (2.1)

dy

dx
= f(y) (2.2)

dy

dx
= f(x, y) (2.3)

A qual a formula (2.3) ele desenvolveu um método de resolução, em que f(x, y)

é um polinômio em x e y em uma série infinita. Já Leibniz desenvolveu notação que

conhecemos hoje dx/dy , além de contribuir para o sinal de integral. Descobriu o método

de separação de variáveis, redução de equações homogêneas separáveis e procedimentos para

a resolução de equações lineares de primeira ordem, assim inúmeros problemas Mecânicos,

conseguiram ser resolvidos pelas contribuições de Newton e Leibniz o que incentivou a

outros cientistas a pesquisar mais sobre as equaçães diferenciais como destaca (Bassanezi;

Ferreira Jr., 1988, p.07):
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A partir desta época surgiu a questão da resolução dos problemas
matemáticos apresentados por estes modelos. Vários deles foram
resolvidos explicitamente e de maneira elegante por matemáticos de
extraordinária habilidade operacional, como os da família Bernoulli:
Jacques (1655 - 1705), Jean (1667 - 1748), Nicholas (1695 - 1726), Daniel
(1700 - 1782) e principalmente por seus alunos, insuperável L. Euler (1707
- 1783) cuja obra (incompleta) preenche 74 grandes volumes.

Em particular, a família Bernoulli, representada pelos irmãos Jakob (1654-1705)

e Johann (1667-1748), teve um papel importante no progresso das equações diferenciais,

conforme Boyce e Diprima (2015), os irmãos fizeram grande contribuições ao qual eles

resolveram muitos problemas relacionados a Mecânica formuladas através das equações

diferenciais a qual vale destacar equações diferencial do tipo

y′ =

[

a3

b2y − a3

]
1

2

(2.4)

resolvida por Jakob, a qual ficaria conhecida como a famosa equação “Bernoulli”, já Johann

foi capaz de solucionar a equação do tipo:
dy

dx
=

y

ax
(2.5)

Jakob também apresentou pela primeira vez a expressão “integral” como

um termo moderno em seu artigo. Por outro lado, o filho de Johann, Daniel Bernoulli

(1700-1782), foi um notável matemático extraordinário ao qual tinha um interesse mútuo

em equações diferenciais parciais, ele ficou conhecido por desenvolver a famosa equação de

Bernoulli da mecânica dos fluidos e o primeiro a encontrar que, tempos depois, seriam

funções de Bessel.

Entre os cientistas que mais contribuíram para o desenvolvimento das equações

diferenciais, destaca-se Leonhard Euler (1707–1783), eminente matemático suíço e discípulo

de Johann Bernoulli. Euler teve um papel fundamental nesse campo, oferecendo avanços

teóricos e metodológicos que revolucionaram a matemática e suas aplicações. Segundo

Boyce e DiPrima (2015), Euler é considerado por muitos o matemático mais memorável

de todos os tempos, tendo deixado uma vasta produção intelectual composta por mais

de 70 volumes, abrangendo praticamente todas as áreas da matemática, além de diversos

campos do conhecimento.

Dentre suas contribuições mais notáveis, destaca-se a formulação do método do

fator integrante, essencial na resolução de equações diferenciais lineares homogêneas com

coeficientes constantes. Euler também se dedicou ao estudo de equações diferenciais não

lineares, propondo soluções inovadoras que influenciaram diretamente o desenvolvimento

da matemática aplicada. Sua genialidade transcendeu os limites da matemática pura,

estendendo-se à física, à engenharia, à astronomia e à mecânica dos fluidos, consolidando-o

como uma figura central na história da ciência. Suas contribuições não apenas fortaleceram

os fundamentos teóricos da matemática, mas também abriram caminhos para aplicações

práticas que permanecem relevantes até os dias atuais.
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2.1 Equações Diferenciais

Conforme Boyce e DiPrima (2015, p.54), “o estudo de Equações Diferenciais é

uma busca para entender algum processo Físico representado pela modelagem Matemática,

seja ela simples ou complexo.” Já para Bassanezi e Ferreira Jr (1988), as equações

diferenciais, talvez sejam as únicas no ramo da Matemática que têm mais interações

com outras ciências desde de sua origem.

Ainda nesse contexto o mesmo autor nos afirmam, que as equações diferenciais

que descrevem algum processo Físico são conhecidas como modelos matemáticos. Modelos

esses, que se tornaram indispensável para Mecânica clássica desde sua descoberta no século

XVII o que nos mostra que a Mecânica é um estudo importante nas equações diferencias

como ressalta Bassanezi e Ferreira Jr (1988).

Segundo Bassanezi (2002), a modelagem Matemática é uma arte de reformular

e resolver problemas do cotidiano por meio da Matemática, interpretando sua linguagem e

adaptando-a às situações do mundo real. Ainda nesse contexto, o autor ainda afirma que:

Muitos problemas que serviram para testar métodos matemáticos ou
estimular desafios e competições entre matemáticos nos séculos XVII
e XVIII, tiveram sua origem na observação de processos mecânicos
geralmente simples.(Bassanezi, 2002, p.21)

A construção de um modelo matemático exige, primeiramente, o reconhecimento

de que cada problema apresenta um comportamento único, com características e

peculiaridades próprias. Nesse sentido, os autores enfatizam que a modelagem não é

uma habilidade que pode ser completamente sistematizada por meio de regras fixas ou

procedimentos padronizados. Apesar disso, o conhecimento dessas regras pode ser útil como

ponto de partida, auxiliando na compreensão e na estruturação do modelo, especialmente

em contextos mais complexos Boyce e DiPrima (2015).

Já Bassanezi (2002), destaca que os modelos matemáticos são uma síntese

da reflexão sobre a realidade, cujo objetivo principal é explicar e compreender situações

estudadas para intervir sobre elas.

Em contra partida Bassanezi e Ferreira Jr. (1988), destacam que problemas

reais não podem ser representados de maneira precisa, mas ao trabalhar com variáveis, os

modelos matemáticos podem reproduzir de maneira aproximada o problema real vividos em

nosso cotidiano. Assim, os modelos e a modelagem Matemática representam a formulação

e dedução de vários problemas que podem ser resolvidos por meio de equações diferenciais

ordinárias e parciais, tornando-se uma ferramenta essencial para a solução de problemas e

o avanço do conhecimento intelectual na resolução de problemas reais do nosso cotidiano.

Assim, esta pesquisa introduz os princípios fundamentais das Equações

Diferenciais (ED), apresentando algumas definições e técnicas de resolução por meio

de exemplos selecionados. Para uma análise das equações diferenciais ordinárias, são
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Utilizados exemplos extraídos de obras reconhecidas, como as de Boyce e DiPrima (2015),

Zill e Cullen (2001), Bassanezi e Ferreira Jr. (1988), Bronson e Costa (2008), entre outros

autores, ao longo do estudo, para obter uma análise mais aprofundada das Equações

Diferenciais Ordinárias.

2.2 Equações diferenciais e suas classificações

Uma equação diferencial pode ser compreendida como uma expressão

matemática que estabelece uma relação entre uma função desconhecida e suas derivadas,

envolvendo, portanto, variáveis dependentes e independentes. Essas equações surgem

quando se busca descrever fenômenos dinâmicos, nos quais há variação de uma grandeza

em função de outra. Podem ser classificadas de acordo com diferentes critérios, como o tipo

(ordinária ou parcial), a ordem (relativa ao maior grau da derivada presente) e a linearidade.

Tais características serão abordadas nas próximas seções, visando a compreensão mais

aprofundada dessa importante ferramenta matemática.

Definição 2.1: Variável Dependente é a variável cujo valor depende de uma ou mais

outras variáveis. Em outras palavras, ela não pode assumir qualquer valor livremente,

pois está condicionada aos valores das variáveis das quais depende.

Definição 2.2: Variável Independente é a variável que pode assumir qualquer valor

dentro de um determinado domínio, sem depender de outras variáveis. Ela é livre e

serve de referência para determinar os valores das variáveis dependentes.

2.2.1 Classificação em relação ao tipo

As equações diferenciais podem ser classificadas, de forma geral, em dois tipos

distintos: equações diferenciais ordinárias (EDOs) e equações diferenciais parciais (EDPs).

No caso das EDOs, trata-se de equações nas quais as derivadas envolvidas referem-se a

uma única variável independente. Em outras palavras, a função desconhecida depende

de apenas uma variável, e todas as suas derivadas são tomadas em relação a essa mesma

variável. Esse tipo de equação é amplamente utilizado na modelagem de sistemas que

evoluem ao longo do tempo ou em função de uma única dimensão (Zill; Cullen, 2001).
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Exemplo: 2.1

dP

dt
= kP (2.6)

A equação (2.6), que representa o modelo de crescimento populacional, é

classificada como uma equação diferencial ordinária porque envolve derivadas em relação

a uma única variável independente, neste caso, o tempo (t). Isso significa que a função

desconhecida P (t), que descreve a população em função do tempo, depende exclusivamente

dessa variável, e todas as derivadas presentes na equação são tomadas com relação a (t).

Esse é o critério essencial que diferencia as equações diferenciais ordinárias das equações

diferenciais parciais, as quais, por sua vez, envolvem derivadas em relação a duas ou mais

variáveis independentes.

Outro exemplo de equação diferencial ordinária pode ser observado na análise

do movimento de corpos em queda livre, conforme ilustrado no Exemplo (2.2).

Exemplo: 2.2

m
dv

dt
= mg − yv (2.7)

A equação vai descrever o movimento de um corpo em queda, considerando a

resistência do ar. Nessa expressão, m representa a massa do objeto, enquanto dv
dt

indica a

taxa de variação da velocidade com o tempo, ou seja, a aceleração. O termo mg corresponde

à força gravitacional que atua sobre o corpo, e yv representa a força de resistência do

ar, que é proporcional à velocidade v. A constante y depende de características como

o formato do objeto e o meio em que ele se move. Dessa forma, a equação expressa

a força resultante sobre o corpo, segunda lei de Newton, considerando a oposição

do ar ao movimento. Outros exemplos de equações diferenciais ordinárias, extraídos

das obras de Boyce e DiPrima (2015) e de Bronson e Costa (2008), são apresentados a seguir:

Exemplo: 2.3

L
d2Q(t)

dt2
+ R

dQ(t)

dt
+

1

C
Q(t) = E(t) (2.8)

O exemplo 2.3, é uma equação diferencial ordinária, pois envolve derivadas

de uma função desconhecida Q(t) em relação a uma única variável independente, o tempo t.

Exemplo: 2.4
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dy

dx
= 5x + 3 (2.9)

O exemplo 2.4 é uma equação diferencial ordinaria, porque relaciona a derivada

de uma função y(x) em relação a uma única variável independente x.

Exemplo: 2.5

ey d2y

dx2
+ 2

(

dy

dx

)2

= 1 (2.10)

O exemplo (2.5) é uma equação diferencial ordinária, porque envolve derivadas

da função y(x) em relação a uma única variável independente x.

As equações diferenciais parciais são aquelas em que as derivadas estão

relacionadas a duas ou mais variáveis independentes. Diferente das equações diferenciais

ordinárias, que lidam com variações em apenas uma direção, as equações parciais são

utilizadas para descrever fenômenos em que a variação ocorre em múltiplas direções ao

mesmo tempo Zill e Cullen (2001).

Essas equações aparecem com frequência em situações do mundo real,

especialmente na física e na engenharia. Um exemplo clássico é a equação da onda

unidimensional, que descreve como uma vibração se propaga ao longo de uma corda ou

superfície como vista no exemplo (2.6).

Exemplo 2.6:

∂2u

∂t2
= c2 · ∂2u

∂x2
(2.11)

Onde u(x, t) representa a função da onda, que depende da posição x e do

tempo t; ∂2u
∂t2 é a derivada parcial de segunda ordem em relação ao tempo; ∂2u

∂x2 é a derivada

parcial de segunda ordem em relação ao espaço; e c é a velocidade de propagação da onda

no meio considerado.

Exemplo 2.7:

∂u

∂y
= −∂v

∂x
(2.12)

O exemplo (2.7) é uma equação diferencial parcial, pois u e v são variáveis

dependentes de duas variáveis independente x e y o que resulta que u = u(x, y) e v = v(x, y)

ou seja a equação irá se relacionar as taxas de variação de u em relação a y com as de v

em relação a x

Outro exemplo em que as equações diferenciais parciais (EDPs) aparecem é na

equação de Laplace.
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Exemplo 2.8

∂2f

∂x2
+

∂2f

∂y2
= 0 (2.13)

Essa é a forma bidimensional da equação de Laplace. A função f(x, y) é a

incógnita da equação e depende de duas variáveis independentes, x e y.

Essa equação é classificada como uma equação diferencial parcial (EDP) de

segunda ordem, homogênea e linear, e é amplamente utilizada na modelagem de fenômenos

físicos e de engenharia.

2.2.2 Classificação em relação a ordem

A ordem de uma equação diferencial está relacionada a derivada de maior

ordem que nela aparece. De modo geral, as equações podem ser de 1ª ordem , 2ª ordem,

3ª ordem..., ou de ordem n, podendo ser escrita na forma:

F (t, y, y′, y′′, y′′′, . . . , y(n)) = 0 (2.14)

Em que y é uma variável dependente apenas de uma variável independente t.

Exemplo 2.9:

dy

dx
+ y = ex (2.15)

A equação (2.15) é uma equação diferencial de primeira ordem, pois sua maior

derivada é dy

dx
, em que y é a função incógnita e x a variável independente. Outro exemplo

de equação diferencial de primeira ordem pode ser observado na equação (2.7), do exemplo

(2.2), cuja maior derivada é dv
dt

, sendo v a função incógnita e t a variável independente.

2.2.3 Classificação em relação a linearidade

A linearidade de uma equação diferencial pode ser classificada como linear ou

não-linear. Uma equação é considerada linear quando apresenta uma função F que envolve

incógnita e suas derivadas, é uma função linear em relação às variáveis y, y′, y′′...yn. Dessa

forma, dizemos que a equação diferencial de ordem n é linear quando pode ser expressada

pela forma:

an(x)
dny

dxn
+ an − 1(x)

dn − 1y

dxn − 1
+ ... + a1(x)

dy

dx
+ a0(x)y = g(x) (2.16)

Veja que as equações diferenciais lineares são caracterizadas de acordo com

duas propriedades:
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➣ A variável dependente y e todas as suas derivadas aparecem em primeiro grau,

ou seja, a potência de cada termo envolvendo y é igual a 1.

➣ Cada coeficiente depende apenas da variável independente x.

As equações diferenciais ditas não-lineares são equações que não podem ser

escrita na forma (2.16), de acordo com Boyce e Diprima um caso simples que envolve

uma equação diferencial não-linear são os problemas que inclui pêndulos a qual tem como

equação:

d2θ

dt2
+

g

L
senθ = 0 (2.17)

Onde, (θ) a variável dependente e o (t) e a variável independente, o (θ) irá

representar a oscilação do pêndulo em um determinado instante de tempo(t). A constante

(g) representa a aceleração da gravidade em metros por segundo (m/s2), e (L) corresponde

ao comprimento da corda ou fio, em metros (m). Trata-se de uma equação não linear, pois

envolve o termo (senθ), o que descaracteriza a linearidade da equação. Outro exemplo

pode ser encontrado no livro de Zill e Cullen (2001, p.04).

d3y

dx3
+ y2 = 0 (2.18)

A equação diferencial ordinária (2.18) não é linear, devido à presença do termo

y2, pois não obedece a primeira propriedade de linearidade.

2.3 Métodos de solução

As soluções de uma equação diferencial podem ser classificadas em gerais e

particulares. A solução geral corresponde ao conjunto de todas as soluções possíveis da

equação, geralmente expressas por meio de constantes arbitrárias. Já as soluções particulares

são aquelas que satisfazem condições iniciais ou outras condições complementares

específicas, conforme destacado por Bassanezi e Ferreira Jr. (1988).

Sobre esse tema, Zill e Cullen em seu livro traz algumas definições do que

seria realmente uma solução particular e geral de uma equação diferencial, conforme será

apresentado a seguir.

Definição 2.3 Zill e Cullen (2001,p.04): Qualquer função f definida em algum

intervalo I, que, quando substituída na equação diferencial, reduz a equação a uma

identidade, é chamada de solução para equação no intervalo.
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Definição 2.4 Zill e Cullen(2001,p.09): Uma solução de uma equação diferencial

que não depende de parâmetros arbitrário é chamada de solução particular

Definição 2.5 Zill e Cullen (2001,p.10): Se toda solução para F (x, y, y′...yn) = 0

no intervalo I pode ser obtida de G(x, y, C1...Cn) = 0 por uma escolha apropriada

C1.i = 1, 2...n dizemos que familia a de n-parâmetros é uma solução geral.

Vale ressaltar que o intervalo I, a depender do contexto em que é utilizado, pode

assumir diferentes formas. Ele pode representar um intervalo aberto (a, b), um intervalo

fechado [a, b], ou ate mesmo um intervalo infinito, como (0, ∞).

2.3.1 Problema de Valor inicial (PVI)

O problema:

dy

dx
= f(x, y) (2.19)

Sujeito a condições inicias:

y(x0) = y0 (2.20)

Um problema de valor inicial (PVI) esta relacionado a uma situação em que

se busca determinar uma função que satisfaça uma equação diferencial juntamente com

condições iniciais. De forma geral, um PVI pode ser representado pela equação dy

dx
= f(x, y),

acompanhada da condição inicial y(x0) = y0 a qual x0 é um ponto pertencente a um

intervalo I, e y0 é o valor da função nesse ponto.

2.4 Teorema de existência de uma única solução

De acordo com Boyce e Diprima(2015), Antes mesmo de iniciarmos a solução

de um problema de valor inicial, é fundamental investigar previamente a existência e a

unicidade da solução. Essa análise pode ser guiada por três questões principais:

➣ A equação diferencial em questão admite solução?

➣ Caso exista uma solução, ela é única?

➣ Há alguma solução que satisfaça uma condição inicial específica?

Responder a essas perguntas é essencial para garantir que estamos lidando com

um problema bem definido e que nossos esforços não serão em vão. Para isso, contamos
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com o Teorema de Existência e Unicidade, que estabelece as condições sob as quais uma

equação diferencial de primeira ordem possui uma solução única associada a um dado

valor inicial. Teorema a seguir pode ser encontrado em Zill e Cullen (2001, p.40):

2.1 Teorema de Existência e Unicidade : Seja R uma região retangular no

plano xy definida por a ≤ x ≤ b, c ≤ y ≤ d, que contém o ponto (x0, y0) em seu

interior. Se f(x, y) e a ∂f

∂y
são contínuas em R, então existe um intervalo I centrado

em x0 e uma única função y(x) definida em I que satisfaz o problema de valor

inicial.

Zill e Cullen (2001) afirmam que o teorema (2.1) é um dos mais populares entre

os teoremas de equações diferenciais, uma vez que os critérios de continuidade tornam a

sua verificação relativamente simples. No entanto, não é possível estabelecer um intervalo

específico para I onde uma solução possa está definida sem resolver a solução diferencial.
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3 EQUAÇÕES DIFERENCIAS DE PRIMEIRA ORDEM

Segundos os autores Boyce e Diprima (2015), Zill e Cullen (2001), Bassanezi e

Ferreira Jr (1988), uma equação diferencial ordinária de primeira ordem pode ser escrita

da seguinte forma:

dy

dt
= f(t, y) (3.1)

Seguindo analogia dos autores que traz também a forma escrita de uma equação

diferencial ordinária linear de primeira ordem, a qual tem a forma:

dy

dt
+ p(t)y = q(t) (3.2)

Sendo p e q funções que dependem apenas de uma variável independente t, a

solução da equação (3.2) pode ser obtida utilizando o método do fator integrante. Esse

método permite encontrar uma solução geral em um intervalo I, no qual as funções p(t) e

q(t) são contínuas.

Ao multiplicar a equação diferencial (3.2) por uma função µ(t), a equação é

transformada em uma forma integrável, o que facilita sua resolução, pois permite aplicar a

regra da derivada do produto. A função µ(t) é chamada de fator integrante.

O objetivo e provar que µ(t) é um fator integrante da equação diferencial (3.2).

A resolução a seguir será baseada na análise dos autores Zill e Cullen (2001), a fim de

proporcionar maior embasamento teórico.

Multiplicando ambos lados da equação diferencial (3.2) pelo termo µ(t) temos

que:

µ(t)
dy

dt
+ µ(t)p(t)y = µ(t)q(t), t ∈ I. (3.3)

Observe que o objetivo é fazer com que o lado esquerdo seja dado por µ(t)y(t).

Utilizando a regra da cadeia na equação (3.3), tem-se que:

µ(t)
dy

dt
+ µ(t)p(t)y =

d

dt
[µ(t)y(t)] (3.4)

Resolvendo a equação (3.4) pela regra do produto temos que:

d

dt
[µ(t)y(t)] = µ(t)

dy

dt
+

dµ

dt
y(t) (3.5)

Subtraindo o termo µ(t)dy

dt
da equação (3.5) temos que:
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µ(t)p(t)y =
dµ

dt
y(t) (3.6)

Eliminando y(t) da equação (3.6), sob a suposição de que y(t) ̸= 0, temos:

µ(t)p(t) =
dµ

dt
(3.7)

A equação (3.7) é uma equação separável, sendo possível resolvê-la por meio

de integração:

ln|µ(t)| =
∫

p(t)dt (3.8)

Onde:

µ(t) = e
∫

p(t)dt (3.9)

3.1 Equações Diferenciais Separáveis

De acordo com Boyce e DiPrima (2015), uma equação diferencial de primeira

ordem escrita na forma da equação (3.1) pode, em muitos casos, não ser linear. Isso dificulta

sua resolução, pois, para equações não lineares, muitas vezes não existe um método de

solução universalmente aplicável. No entanto, quando a equação pode ser reescrita na

forma:

dy

dx
=

g(x)

h(y)
, (3.10)

torna-se possível aplicar o método de separação de variáveis, já que as variáveis

x e y podem ser isoladas em lados opostos da equação. Reorganizando a equação, temos:

h(y)dy = g(x)dx. (3.11)

Essa forma evidencia uma equação diferencial separável. A solução, então, pode

ser obtida por integração direta de ambos os lados, resultando em:

∫

h(y)dy =
∫

g(x)dx + C, (3.12)

em que C representa uma constante arbitrária de integração.
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3.2 Equações diferenciais Exatas

Dentro do estudo das equações diferenciais ordinárias de primeira ordem,

destaca-se uma classe conhecida como equações exatas. Essas equações possuem uma

estrutura particular que permite sua resolução por meio da identificação de uma função

potencial, ou seja, uma função cujo gradiente reproduz a equação original. Esse tipo de

equação se mostra relevante não apenas pela elegância matemática de sua resolução, mas

também pelas diversas aplicações em áreas como a física, a engenharia e a modelagem de

sistemas dinâmicos.

Neste tópico, será apresentado o conceito de equações exatas, a condição

necessária para sua caracterização, bem como o método sistemático de resolução. Essa

abordagem é essencial para a compreensão de certos problemas práticos.

Uma equação diferencial de primeira ordem é dita exata quando admite uma

função potencial g(x, y), tal que:

M(x, y)dx + N(x, y)dy = 0 (3.13)

A equação (3.13) é a diferencial total de g(x, y), ou seja:

dg(x, y) = M(x, y)dx + N(x, y)dy (3.14)

Em outras palavras, existe uma função g(x, y) cuja diferencial total coincide

com a equação dada. Dessa forma, resolver a equação (3.13) equivale a determinar a função

g(x, y). Para que a equação (3.13) seja considerada exata, é necessário que sejam satisfeitas

as condições estabelecidas no teorema (3.1), o qual será apresentado a seguir, pois é esse

teorema que assegura a exatidão da equação:

Teorema 3.1 Condição de exatidão: Sejam M(x, y) e N(x, y) funções contínuas

com derivadas parciais continuas em uma região retangular R definida por a < x <

b, c < y < d. Então, uma condição necessária e suficiente para que

M(x, y)dx + N(x, y)dy

seja uma diferencial exata é
∂M(x, y)

∂y
=

∂N

∂x

Fonte: Zill e Cullen (2001, p. 61)

Em outras palavras, o teorema estabelece que, caso as funções M(x, y) e N(x, y)

admitam derivadas parciais contínuas em uma certa região, a equação pode ser considerada

exata.
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Supondo que a equação (3.13) seja exata, o próximo passo consiste em

determinar a função g(x, y) tal que:

∂g(x, y)

∂x
= M(x, y) (3.15)

∂g(x, y)

∂y
= N(x, y) (3.16)

Desse modo a solução de uma equação exata seguir o seguinte método que é

Integra a função M(x, y) em relação a x, tratando y como constante:

g(x, y) =
∫

M(x, y) dx + h(y)

onde h(y) é uma função de y que surge como constante de integração.

Deriva-se a expressão obtida para g(x, y) em relação a y e iguala-se a N(x, y):

∂g

∂y
=

∂

∂y

(
∫

M(x, y) dx + h(y)
)

=
∂

∂y

(
∫

M(x, y) dx
)

+ h′(y) = N(x, y) (3.17)

Dessa equação, determina-se h′(y) e, posteriormente, integra-se para obter h(y).

Por fim, a solução geral da equação diferencial é dada implicitamente por:

g(x, y) = c (3.18)

onde c ∈ R é uma constante arbitrária.
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4 EQUAÇÕES DIFERENCIAIS DE SEGUNDA ORDEM

De acordo com Boyce e DiPrima (2015), uma equação diferencial de segunda

ordem tem a forma:

d2y

dt2
= f

(

t, y,
dy

dt

)

(4.1)

A equação (4.1) será considerada uma equação diferencial linear se estiver na

forma:

f

(

t, y,
dy

dt

)

= g(t) − p(t)

(

dy

dt

)

− q (t) (4.2)

Observe que a função f é linear em y e dy

dt
, e que suas funções p, g e q são

funções específica de única variável independente t, porém não dependem de y a qual pode

ser reescrita da seguinte forma:

y′′ + p(t)y′ + q(t)y = g(t) (4.3)

ou

P (t)y′′ + Q(t)y′ + R(t)y = G(t) (4.4)

As equações que se apresentam nas formas (4.3) ou (4.4) serão classificadas

como lineares, onde p, q e g são continuas em I. As equações que não se enquadrarem nas

formas anteriormente apresentadas serão classificadas como não lineares.

se caso a função g(t) = 0 a equação será classificada como homogênea, caso

contrario, será classificada como não-homogênea. Assim considerando a equação (4.3) em

que p(t), q(t) e g(t) são funções contantes em a, b e c em que a equação (4.3) torna-se na

forma:

ay′′ + by′ + cy = 0 com a ̸= 0 (4.5)

A equação (4.5) será denominada equação linear homogênea de segunda ordem

com coeficientes constantes, cuja solução será discutida nas próximas seções, abordando

tanto os casos lineares quanto os não lineares, com o auxílio da obra literária de Zill e

Cullen (2001).
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4.1 Solução de uma equação linear homogênea

Antes de começamos a soluciona a equação (4.5) iremos aplicar o teorema do

principio da suposição, também conhecido como método da solução por tentativa a qual

está representado no teorema 4.1 :

Teorema 4.1 principio da suposição: Sejam y1, y2, . . . , yk soluções para a

equação diferencial linear de n-ésima ordem homogênea em um intervalo I. Então, a

combinação linear

y = c1y1(x) + c2y2(x) + · · · + ckyk(x)

Em que os ci, i = 1, 2, . . . , k, são constantes arbitrárias, é também uma solução no

intervalo.

O teorema 4.1, retirado da obra de Zill e Cullen (2001), estabelece que a soma

ou superposição de duas ou mais soluções de uma equação diferencial linear homogênea

também constitui uma solução dessa equação.

Utilizando o método da tentativa, supõe-se que a solução da equação (4.5) pode

ser encontrada na forma exponencial y(t) = ert. Onde suas derivadas são:

y(t)′ = rert, (4.6)

y(t)′′ = r2ert. (4.7)

Fazendo a substituição das derivadas na equação (4.5) tem-se que:

ar2 + brert + cert = 0 (4.8)

Ou inclusive:

(ar2 + br + c)ert = 0 (4.9)

Visto que a função exponencial ert é diferente de zero para todo t ∈ R, pode-se

desconsiderá-la uma equação algébrica em que obtém-se uma equação polinomial em r,

conhecida como equação característica:

ar2 + br + c = 0 (4.10)

A solução da equação característica depende dos valores de suas raízes, que

podem ser obtidas pela fórmula de Bhaskara. O tipo dessas raízes influencia diretamente

a forma da solução da equação diferencial original. Três casos principais podem ocorrer:
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➣ Duas raízes reais e distintas: a solução geral é dada por uma combinação linear das

funções exponenciais associadas a cada raiz:

y(t) = C1e
r1t + C2e

r2t, (4.11)

onde r1 e r2 são as raízes reais distintas da equação característica.

➣ Duas raízes reais e iguais: neste caso, há uma raiz dupla r, e a solução

geral assume a forma:

y(t) = (C1 + C2t)e
rt. (4.12)

➣ Duas raízes complexas conjugadas: quando as raízes são da forma r = α ± βi, a

solução geral pode ser escrita como:

y(t) = eαt (C1 cos(βt) + C2 sin(βt)) . (4.13)

Esses três formatos abrangem todas as possíveis soluções para equações

diferenciais lineares homogêneas de segunda ordem com coeficientes constantes, e a escolha

da forma apropriada depende do discriminante da equação característica.

4.2 Equações Diferenciais Lineares Não-Homogêneas

As equações diferenciais lineares não homogêneas de segunda ordem aparecem

com frequência na modelagem de sistemas físicos, como oscilações mecânicas forçadas,

circuitos elétricos com fonte externa e fenômenos de propagação de ondas.

A forma geral dessas equações é dada por:

a(x)
d2y

dx2
+ b(x)

dy

dx
+ c(x)y = g(x), (4.14)

Onde a(x), b(x), c(x) e g(x) são funções contínuas em um intervalo I ⊆ R, com

a(x) ̸= 0. O termo g(x) representa a fonte ou entrada externa e é o responsável por tornar

a equação não homogênea. Quando g(x) = 0, a equação torna-se homogênea.

Um caso comum e importante ocorre quando os coeficientes a(x), b(x) e c(x)

são constantes. A equação assume então a forma mais simples:

a
d2y

dx2
+ b

dy

dx
+ cy = g(x). (4.15)

A solução geral de uma equação diferencial linear não homogênea é sempre a

soma de duas partes distintas:
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➣ Solução geral da equação homogênea associada, isto é:

a
d2y

dx2
+ b

dy

dx
+ cy = 0, (4.16)

cuja solução, denotada por yh(x), depende das raízes da equação característica

associada:

ar2 + br + c = 0. (4.17)

➣ Uma solução particular yp(x) da equação não homogênea completa:

a
d2y

dx2
+ b

dy

dx
+ cy = g(x). (4.18)

Assim, a solução geral da equação não homogênea é dada por:

y(x) = yh(x) + yp(x). (4.19)

Para encontrar a solução particular yp(x), os métodos mais utilizados são:

➣ Coeficientes a determinar: Utilizado quando g(x) é uma função polinomial,

exponencial, seno ou cosseno, ou uma combinação dessas. Consiste em propor uma

forma funcional para yp(x) com coeficientes desconhecidos e substituí-la na equação para

determinar tais coeficientes.

➣ Variação de parâmetros: Método mais geral, que pode ser aplicado mesmo quando

(g(x)) não é de forma simples. Esse método baseia-se nas soluções da equação homogênea

para construir uma solução particular da equação completa.

O estudo dessas equações é de extrema importância, uma vez que muitos

fenômenos naturais e artificiais são modelados por equações diferenciais de segunda ordem

com termos não homogêneos, como por exemplo sistemas massa-mola com forças externas

ou circuitos RLC sujeitos a uma fonte de tensão variável. A compreensão teórica dessas

soluções permite prever e controlar o comportamento desses sistemas.
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5 ELETROMAGNETISMO ATRAVÉS DA HISTÓRIA

De acordo com Wentworth (2009), o eletromagnetismo teve seus primeiros

indícios com o grego Thales de Mileto por volta de 600 a.C. Ele evidenciou os primeiros

vestígios da atração magnética com a pedra âmbar que significa (elektron), em grego.

Figura 1 – Pedra âmbar

Fonte: Disponivel em:https:
//pt.vecteezy.com/foto/25279437-macro-ambar-mineral-pedra-com-aranha-em-branco-fundo

acesso em: 30 de abr de 2025

A partir dessa descoberta, desencadeou-se uma série de estudos, porém

independentes em relação à eletricidade e ao magnetismo, que duraram por vários séculos

e que, de acordo com Halliday e Resnick (2016, p.13) afirmam que:

A partir dessa origem modesta na Grécia antiga, as ciências da eletricidade
e do magnetismo se desenvolveram independentemente por muitos séculos
até o ano de 1820, quando Hans Christian Oersted descobriu uma ligação
entre elas: uma corrente elétrica em um fio é capaz de mudar a direção da
agulha de uma bússola. Curiosamente, Oersted fez essa descoberta, que
foi para ele uma grande surpresa, quando preparava uma demonstração
para seus alunos de física.

O primeiro estudo mais esboçado foi com o cientista Pierre de Maricourt (1220

- 1270), que escreveu o primeiro trabalho chamado “O Magneto”, a qual, de acordo com

Barbosa (2021, p.09) foi o primeiro estudo organizado sobre o magnetismo do ímã natural.

Nele, Maricourt descreve como a repulsão e a atração de uma agulha magnética poderiam

ser utilizadas para orientar viajantes. Foi também nesse estudo que ele formulou a ideia de

que as linhas de força convergiam para dois pontos opostos do ímã, os quais denominou

de polos.

Em 1600, O médico da rainha Elizabeth I William Gilbert (1544–1603) expandiu

os estudos sobre o magnetismo com sua obra “De Magnete”. Segundo Barbosa (2021, p.

09), Gilbert sugeriu que a Terra funcionava como um grande ímã e concluiu que, além do

âmbar, outras substâncias também poderiam apresentar propriedades similares após serem

atritadas. Para demonstrar isso, ele desenvolveu um experimento chamado Versorium

que possibilitou identificar a atração dessas substâncias friccionadas por um corpo de

massa reduzida, que se tornaria o primeiro instrumento para estudar a energia elétrica. O

Versorium é um instrumento básico, composto por uma agulha rotativa reforçada por um

plano.
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Figura 2 – Versorium.

Fonte: Disponivel em: https://link.springer.com/chapter/10.1007/978-3-031-62994-5_1
Acesso em: 02 de abr de 2025

O cientista norte-americano Benjamin Franklin (1706 – 1790) desenvolveu uma

teoria que transformou profundamente a compreensão da eletricidade ao postular que,

por meio da fricção, um “fluido elétrico” poderia ser transferido de um corpo para outro.

Nesse processo, o objeto que recebia esse fluido passaria apresentar uma carga positiva,

enquanto o que o perdia ficaria com carga negativa. Tal formulação está alinhada com a

concepção apresentada por Sousa (2021, p.36), ao citar Rocha (2002):

No século XVIII, o físico americano Benjamin Franklin (1706–1790)
formulou que o elétron e os raios das tempestades possuíam as mesmas
propriedades, e que a carga elétrica era conservada. (Rocha, J. F., 2002,
apud Sousa, 2021, p.36)

Segundo Ribeiro (2015, p.01), Charles Augustin de Coulomb (1736-1806) foi

um cientista francês que elaborou a lei de Coulomb, que declarava que a força entre duas

cargas elétricas era proporcional ao produto das cargas e inversamente proporcional ao

quadrado da distância entre elas. Nesse cenário, Coulomb realizou diversas pesquisas na

área da física mecânica e realizou um experimento em sua balança de torção, chegando

à lei do inverso do quadrado da distância. Essa lei teve um grande impacto nas novas

tecnologias e nos estudos futuros, o que ajudou também a compreensão da interação de

moléculas dentro de fluidos e sólidos, o que iria contribuir para o estudo da eletricidade e

magnetismo.

De acordo com Wentworth (2009, p. 17), Alessandro Volta (1745–1827) criou a

pilha voltaica, permitindo o controle em estudos com correntes elétricas. Hans Christian

Orsted (1777–1851) descobriu que essas correntes geram campo magnético, e Michael

Faraday (1791–1867) mostrou que a variação do campo magnético induz um campo

elétrico. Essas descobertas foram unificadas por James Clerk Maxwell (1831–1879) em

quatro equações fundamentais do eletromagnetismo.

De acordo com Lima (2019, p.02), Maxwell apresentou suas equações do

eletromagnetismo pela primeira vez em seu artigo “Sobre Linhas de Força Física”,

relacionando características elétricas e magnéticas à luz. Sua contribuição foi essencial

para formular a teoria eletromagnética da luz, solidificando a noção de que a luz e as

manifestações eletromagnéticas são expressões de um único éter.
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6 INTRODUÇÃO AO CIRCUITOS ELÉTRICOS

Os circuitos elétricos constituem um dos conteúdos mais relevantes no estudo

do eletromagnetismo, sendo amplamente abordados em diversos cursos, especialmente

nas áreas de ciências exatas, como Engenharia Elétrica, Matemática e Física. Sua

aplicação abrange inúmeros aspectos da vida cotidiana, incluindo a geração de energia, o

funcionamento de máquinas elétricas e o uso de aparelhos eletrônicos. Trata-se, portanto,

de um tema com ampla aplicabilidade nas áreas da Matemática e da Física, sendo

frequentemente explorado em trabalhos acadêmicos e projetos científicos (Alexander;

Sadiku, 2013).

Ainda segundo os autores, um circuito elétrico pode ser definido como a

interconexão de elementos elétricos. Dessa forma, entende-se o circuito como o caminho

pelo qual as cargas elétricas se deslocam por meio dos fios condutores, permitindo o

transporte de elétrons de um ponto a outro do sistema.

6.1 Lei de Ohm

Quando os elétrons se movem por um condutor, eles colidem com os átomos

do material, perdendo energia na forma de calor. A aplicação de uma tensão faz com

que voltem a ganhar energia, mas novas colisões continuam ocorrendo, criando um ciclo

constante de perdas e ganhos. Essa dificuldade no movimento dos elétrons é chamada de

resistência elétrica. Ela exige uma tensão para manter a corrente fluindo e é representada

pela letra (R), sendo medida em ohms (Ω). Em muitos condutores, a corrente elétrica I

cresce proporcionalmente à tensão V OMalley (2014). A relação entre elas é dada equação

(6.1):

V = RI (6.1)

Em que:

➣ (V ) é a tensão (ou queda de potencial) no resistor.

➣ (R) é a resistência elétrica do componente (medida em ohms(Ω)).

➣ (I) é a corrente elétrica que passa pelo resistor (medida em amperes).

Para Halliday e Resnick (2016), um componente só obedece à Lei de Ohm se a

corrente elétrica que o atravessa variar linearmente com a diferença de potencial aplicada,

independentemente do valor dessa diferença.
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6.2 Elementos de um circuito

6.2.1 Resistor

O resistor é um dos componentes mais básicos de um circuito elétrico. Ele tem

a função de oferecer resistência à passagem da corrente elétrica, transformando parte da

energia elétrica em calor. Quando dizemos que um resistor é ôhmico, estamos afirmando

que ele obedecer a Lei de Ohm representada na equação (6.1), ou seja quando atravessado

por uma corrente elétrica ocorre uma queda de potencial (Nussenzveig, 2015).

Ainda de acordo com Nussenzveig (2015), a conversão de energia elétrica em

energia térmica ocorre por meio do efeito Joule, quando essa energia é dissipada. Essa

dissipação pode ser representada pela fórmula (6.2):

P = I2R (6.2)

“Deve-se destacar que nem todos os resistores obedecem à Lei de Ohm. Aqueles

que a obedecem são denominados resistores lineares”(Alexander; Sadiku, 2013, p. 30). Já

para OMalley (2014), do ponto de vista matemático, o resistor é um componente no qual

existe uma relação algébrica entre a tensão e a corrente instantânea, definida pela equação

(6.1). Os componentes que não seguem essa relação são conhecidos como resistores não

lineares, sendo tratados separadamente. Exemplos de resistores lineares e não lineares

podem ser observados na figura 03.

Figura 3 – Resistores lineares e Não-lineares

Fonte: Jonh O´Malley (2014, p.19)

O resistor “a” será linear, enquanto o resistor “b” será não linear. Desse modo,

existem diferentes tipos de resistores em um circuito, desde aparelhos eletrônicos como

televisores, micro-ondas e secadores de cabelo, nos quais os resistores dividem ou limitam

correntes e voltagens. Tais circuitos podem possuir muitos resistores (Youg; Freedman,

2016).
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Figura 4 – Diversos tipos de resistores encontrados em circuitos eletrico

Fonte: Disponivel em :<https://viverdeeletrica.com/tipos-de-resistores-variaveis/>
acesso em 30 de Maio de 2025

Um exemplo prático de resistor não linear é o termistor, cujo valor de resistência

varia de forma significativa com a temperatura. Existem dois tipos principais: NTC

(coeficiente de temperatura negativo) e PTC (coeficiente de temperatura positivo). A

Figura 05 apresenta a representação de um termistor.

Figura 5 – Termistor

Fonte: Disponivel em : https://pt.vecteezy.com/arte-vetorial/
27775539-termistor-icone-conjunto-em-branco-fundo-ntc-termistor-resistor-placa-plano-estilo

acesso em 24 de julho de 2025

6.2.2 Capacitor e Capacitância

Os capacitores são dispositivos utilizados para armazenagem de carga elétrica

na forma de campo eletrostático. Eles são “formados por duas placas condutoras separadas

por um material isolante ou dielétrico” (Alexander; Sadiku, 2013, p. 190). Essa configuração

impede o fluxo direto de corrente entre as placas, permitindo no entanto, o acúmulo de

cargas elétricas opostas em cada uma delas, como observado na figura 06.
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Figura 6 – Capacitor Comum

Fonte: Alexander; Sadiku, 2013, p.190

Geralmente o capacitor irá possuir carga liquida igual a zero, mas quando esse

condutor é ligado a uma fonte de tensão (v), ocorre a movimentação de elétrons de uma

placa para outra em que uma placa acumula carga positiva (+Q) e a outra, carga negativa

(−Q). Apesar de cada placa estar carregada, o sistema como um todo possui carga líquida

nula, pois as cargas são de mesmo módulo, mas de sinais opostos. Desse modo dizemos

que o capacitor está em equilíbrio eletrostático quando essa distribuição se estabiliza e

não há mais movimento de cargas. A diferença de potencial entre as placas do capacitor é

diretamente proporcional à carga armazenada e inversamente proporcional à capacitância

do dispositivo. A placa com carga (+Q) encontra-se em um potencial elétrico mais elevado,

enquanto a de carga (−Q) apresenta potencial mais baixo (Young; Freedman, 2016). Nos

esquemas de circuitos elétricos, o símbolo do capacitor é representado na figura 07.

Figura 7 – Diagrama de um capacitor em um circuito elétrico

Fonte: Youg; Freedman, 2016, p.112

Sobre a capacitância de capacitor Young e Freedman (2016, p.112) afirma quer

será “a medida da capacidade de armazenar energia de um dado capacitor”, desse modo

vários capacitores conseguem alcançar uma capacitância bastante alta, entre (1 − 1000µF ),

porém em frequências mais baixas. Por outro lado, existem capacitores que funcionam

melhor em frequências mais altas, mas com uma capacitância limitada, geralmente entre
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(5pF − 1µF ) esse capacitores são chamados de capacitores de cerâmica Wentworth (2009)

a equação para calcular a capacitância fica:

C =
Q

Vab

(6.3)

A unidade de medida da capacitância é o Farad, nome dado em homenagem ao

grande físico Michael Faraday. Um Farad equivale a (1C/V), ou seja, um coulomb por volt.

Nessa relação, C representa a constante de proporcionalidade, enquanto (Q) corresponde

ao módulo da carga armazenada. Já Vab indica a diferença de potencial entre os condutores,

sendo que o condutor (a) possui a carga (+Q) e o condutor (b), a carga (−Q) (Young;

Freedman, 2016).

Alexander e Sadiku (2013) afirma que, embora a capacitância C seja definida

como a razão entre a carga Q e a tensão V , ela não depende exclusivamente desses dois

fatores. Na verdade, a capacitância também está relacionada às características físicas do

capacitor, como a área das placas e a distância entre elas. A fórmula (6.3) é utilizada

especificamente para o cálculo da capacitância de capacitores de placas paralelas, sendo

expressada por:

C =
ϵA

d
(6.4)

Nessa equação, (ϵ) representa a permissividade do material dielétrico entre as

placas, (A) corresponde à área de cada placa e (d) é a distância entre elas. Dessa forma, é

possível encontrar diversos tipos de capacitores, como ilustrado na figura 08.

Figura 8 – Diversos tipos de capacitores

Fonte: Youg; Freedman, 2016, p.112

6.2.3 Indutor e Indutância

Indutor é um componente eletrônico cuja principal função é armazenar energia

na forma de campo magnético, quando percorrido por uma corrente elétrica. Ele é
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geralmente constituído por um fio condutor enrolado em forma de espiral, chamado

de bobina. Sua principal característica é a indutância, que mede a capacidade do indutor

de se opor a variações na corrente elétrica (Halliday; Resnick, 2016) em que pode ser

representada pela seguinte relação:

L =
NΦ

i
(6.5)

Na equação (6.5), o termo (N) representa o número de espiras de um solenoide

que está envolvido por um fluxo magnético. Já o produto (NΦ) corresponde ao enlaçamento

do fluxo magnético. A indutância magnética, representada por (L), indica o quanto de

enlaçamento de fluxo magnético o indutor é capaz de produzir para uma determinada

corrente elétrica. No Sistema Internacional (SI), sua unidade de medida é o Tesla-metro

quadrado por ampère (T · m2/A), que recebe o nome de Henry (H), em homenagem ao

físico Joseph Henry (Halliday; Resnick, 2016)

Segundo OMalley (2014), a indutância de um indutor está diretamente ligada

às suas características físicas e ao modo como ele é construído. Fatores como o formato da

bobina, o número total de espiras, o tipo de material ao redor (ou dentro), do núcleo e o

espaço entre as voltas do fio são determinantes para o valor final da indutância. Quanto

mais voltas e maior a área da seção transversal, maior tende a ser a indutância. Para

bobinas simples, feitas em uma única camada, existe uma fórmula aproximada para calcular

a indutância, levando em conta a permeabilidade do material, a área da seção transversal,

o número de espiras e o comprimento total da bobina. Essa relação é dada na seguinte

equação:

L =
N2µA

ℓ
(6.6)

Onde (N) é o número de espiras, (µ) a permeabilidade do material, (A) a área

da seção transversal e (ℓ) o comprimento da bobina.

Em circuitos elétricos e eletrônicos, os indutores têm diversas aplicações, como

filtrar sinais, suavizar variações de corrente, armazenar energia temporariamente ou compor

circuitos ressonantes, quando associados a capacitores. Sua representação simbólica nos

circuitos é mostrada na figura 09:

Figura 9 – Diagrama de um indutor em circuitos elétricos

Fonte: Jonh O´Malley (2014, p.158)

Como a indutância irá depender diretamente da forma e dimensões do indutor,

existirá vários tipos de indutor a qual pode ser observados na figura 10:
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Figura 10 – Diversos tipos de indutores

Fonte: Alexander; Sadiku, 2013, p.190

6.2.4 Tensão

A fonte de tensão é um dos elementos fundamentais em circuitos elétricos e

eletrônicos, desempenhando o papel de fornecer a energia necessária para o funcionamento

dos dispositivos conectados ao circuito. Em termos conceituais, uma fonte de tensão é um

componente ou sistema capaz de manter uma diferença de potencial elétrico constante

entre seus terminais, independentemente da corrente que a ela esteja sendo solicitada

dentro de certos limites operacionais (OMalley, 2014). Sua equação pode ser representada

na equação (6.7):

V (volts) =
W joules

Q coulombs
(6.7)

Além disso, a tensão elétrica também pode ser representada por meio de

diagramas de circuitos, como ilustrado na figura 11. Nesses diagramas, os componentes

são representados por símbolos padronizados, sendo que a fonte de tensão é indicada por

um círculo com um sinal positivo e negativo. O indutor, por sua vez, é simbolizado por

duas retas paralelas de comprimentos diferentes: a linha maior representa o terminal de

maior potencial, enquanto a menor indica o terminal de menor potencial (Barbosa, 2021).

Figura 11 – Representação da tensão em circuitos elétricos

Fonte: Disponivel em :https://www.maxwell.vrac.puc-rio.br/10/10_002.HTM
acesso em 16/06/2025
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Uma aplicação prática dessa representação esquemática pode ser observada nas

pilhas, como exemplificado na figura 12, onde a disposição dos polos positivo e negativo

remete diretamente ao conceito de diferença de potencial elétrico.

Figura 12 – Representação da tensão em pilhas

Fonte: Disponível em:https://www.newtoncbraga.com.br/como-funciona/
10805-como-funcionam-as-pilhas-e-baterias-art2506.html acesso em 19/07/2025

6.3 Leis de Kirchhoff

6.3.1 Primeira lei de Kirchhoff

A primeira lei está relacionada ao princípio da conservação da carga elétrica,

que afirma que “a soma algébrica das correntes que entram em um nó (ou em um limite

fechado) é zero” (Alexander; Sadiku, 2013, p.34). Em outras palavras, a quantidade total

de corrente que chega a um ponto de conexão em um circuito (o nó) é exatamente igual à

quantidade que sai desse mesmo ponto. Isso garante que não há acúmulo de carga elétrica

no nó, refletindo diretamente a conservação da carga. Essa lei é uma importante ferramenta

de análise de circuitos, conhecida como Lei das Correntes de Kirchhoff (LKC) ou Lei do

Nó, está representada matematicamente pela equação (6.8):

N
∑

n=1

in = 0 (6.8)

6.3.2 Segunda lei de Kirchhoff

A segunda lei é conhecida lei de Kirchhoff para tensão (LKT) ou lei das malhas,

e afirma que “a soma algébrica das variações de potencial encontradas ao longo de uma

malha completa de um circuito é zero” (Halliday; Resnick, 2016, seção 27.01). Ou seja, ao

percorrer um caminho fechado dentro de um circuito, a soma das quedas e elevações de

tensão deve resultar em zero. Representada pela equação (6.9):

L
di

dt
+ iR +

Q

C
= E(t) (6.9)
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6.4 Circuito de Primeira e Segunda ordem

Os circuitos elétricos do tipo RC e RL são classificados como circuitos de

primeira ordem, pois possuem apenas um elemento armazenador de energia (capacitor ou

indutor). Isso resulta em uma equação diferencial de primeira ordem. Por outro lado, o

circuito RLC é considerado um circuito de segunda ordem, já que contém dois elementos de

armazenamento de energia (capacitor e indutor), o que leva à formulação de uma equação

diferencial de segunda ordem (Alexander; Sadiku, 2013).

Para resolver problemas envolvendo circuitos elétricos simples, é fundamental

ter conhecimento prévio das Leis de Kirchhoff e da Lei de Ohm.

Segundo Zill e Cullen (2001), como discutido anteriormente, a Segunda Lei

de Kirchhoff para Tensões (LKT) aplicada a circuitos elétricos estabelece que a soma

algébrica das quedas de tensão ao longo de um circuito fechado é igual à força eletromotriz

aplicada. Essa análise envolve componentes como indutores, capacitores e resistores, cujas

tensões podem ser expressas, respectivamente, em função da derivada da corrente, da

carga acumulada e da própria corrente elétrica. As expressões matemáticas que descrevem

essas tensões dependem diretamente das constantes características de cada componente:

indutância; capacitância e resistência, conforme apresentado a seguir:

Indutor = L
di

dt
= L

d2

dt2
(6.10)

Resistor = iR = R
dq

dt
(6.11)

Capacitor =
1

C
q (6.12)

Dessa forma igualando as equações obtemos a segunda lei Kirchhoff com suas

derivadas.

L
d2

dt2
+ R

dq

dt
+

1

C
q = E(t) (6.13)

Como a carga (q(t)) no capacitor está relacionada com a corrente (i(t)) pela

expressão (i = dq

dt
) , a equação (6.13) constitui-se como uma equação diferencial linear de

segunda ordem.

6.4.1 Circuito RC

Esse tipo de circuito é composto por um resistor e um capacitor, sendo

alimentado por uma fonte de tensão variável no tempo. Aplicando a Segunda Lei de
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Kirchhoff, podemos obter a seguinte equação que descreve o comportamento dos circuitos

elétricos do tipo RC:

iR +
Q

C
= E(t) (6.14)

Como as a corrente (i) e carga (Q) se relacionam com a deriva de (idq

dt
) temos

uma nova equação que vai se dada por:

R
dq

dt
+

1

C
q = E(t) (6.15)

Representação do Diagrama de um circuito RC pode ser obsevado na figura 11

Figura 13 – Circuito RC

Fonte: (Nussenzveig, 2015, p.195)

6.4.2 Circuito RL

O circuito RL é composto por um resistor e um indutor. Seu funcionamento

baseia-se no controle da corrente elétrica, sendo que o indutor atua como um elemento

de armazenamento de energia. Ao se opor à variação da corrente, ele gera uma força

eletromotriz contrária.

Quando a chave do circuito é fechada, estabelece-se uma tensão constante. Ao

ser aberta, o indutor passa a se comportar como um curto-circuito, pois (Ldi/dt = 0).

Antes de receber energia, o circuito não armazena nenhuma energia Nilsson e Riedel (2015).

Aplicando a segunda Lei de Kirchhoff, a equação diferencial que descreve o circuito fica:

L
di

dt
+ Ri = 0 (6.16)

Substituindo (i(t) = dq

dt
), então:

L
d2

dt2
+ R

dq

dt
= E(t) (6.17)

Essa equação é classificada como uma equação diferencial ordinária de primeira

ordem, pois envolve apenas a derivada de primeira ordem da corrente i(t). Além disso,
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como os coeficientes (R) e (L) são constantes, trata-se de uma equação com coeficientes

constantes.

A representação do diagrama do circuito RL pode ser observado na figura 14:

Figura 14 – Circuito RL

Fonte: (Halliday; Resnick, 2016)

6.4.3 Circuito RLC

O circuito RLC se destaca por reunir resistor, indutor e capacitor em um

único sistema. Apesar de sua aparência simples, sua análise exige a aplicação da Segunda

Lei de Kirchhoff, que resulta em uma equação diferencial de segunda ordem, como a

apresentada na equação (6.13). Esse modelo matemático é essencial para compreender

como as grandezas elétricas se relacionam no tempo e como o circuito responde a diferentes

estímulos. A representação do diagrama do circuito RLC pode ser obsevado a abaixo:

Figura 15 – Circuito RLC

Fonte: Nussenzveig (2015)
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7 METODOLOGIA

Para Marconi e Lakatos (2003), o método cientifico é uma série de atividades

organizadas sistematicamente de forma racional, em que traz uma melhor estruturação e

ajuda o pesquisador a chegar aos seus objetivos de forma segura e com firmeza evitado

erros e promovendo economia, ainda nesse contexto as autoras trazem a definição a que se

refere uma pesquisa cientifica.

A pesquisa, portanto, é um procedimento formal, com método de
pensamento reflexivo, que requer um tratamento científico e se constitui
no caminho para conhecer a realidade ou para descobrir verdades parciais.
(Marconi; Lakatos, 2003, p.155)

Desse modo, o presente trabalho caracteriza-se como uma pesquisa bibliográfica

de natureza exploratória, com ênfase na aplicação das Equações Diferenciais Ordinárias

(EDOs) em circuitos elétricos. Explorando conceitos fundamentais por meio da modelagem

matemática. A pesquisa foi fundamentada em obras clássicas e contemporâneas como

Boyce e DiPrima (2015), Zill e Cullen (2001), Bassanezi e Ferreira Jr. (1988), Bronson e

Costa (2008), entre outros autores, além do uso de dissertações, teses e artigos científicos

obtidos por meio de plataformas como Google Acadêmico, Scielo e Periódicos Capes.

No que diz a respeito sobre pesquisa bibliográfica Gil (2002), destacar que

esse tipo de estudo será constituído através materiais já elaborados através de fontes

bibliográficas o que a também a carateriza também uma pesquisa exploratória já que seu

principal instrumento se configura através de analise de dados sobre diversas visões em

relação a um problema. Gil (2002), ainda destaca a vantagem de utiliza-la:

A principal vantagem da pesquisa bibliográfica reside no fato de permitir
ao investigador a cobertura de uma gama de fenômenos muito mais
ampla do que aquela que poderia pesquisar diretamente. Essa vantagem
torna-se particularmente importante quando o problema de pesquisa
requer dados muito dispersos pelo espaço. Por exemplo, seria impossível
a um pesquisador percorrer todo o território brasileiro em busca de dados
sobre população ou renda per capita; todavia, se tem a sua disposição uma
bibliografia adequada, não terá maiores obstáculos para contar com as
informações requeridas. A pesquisa bibliográfica também é indispensável
nos estudos históricos. Em muitas situações, não há outra maneira de
conhecer os fatos passados se não com base em dados bibliográficos.(Gil,
2002, p.45)

Com relação a pesquisa exploratória, esta tem como objetivo ampliar a

compreensão sobre a aplicação das equações diferenciais ordinárias no contexto dos

circuitos elétricos. Segundo Gil (2002), esse tipo de pesquisa busca proporcionar maior

familiaridade com o tema, visando torná-lo mais claro e acessível. Assim, pode-se afirmar

que o trabalho tem como propósito o aprimoramento do conhecimento e o desenvolvimento

de novas ideias a partir da análise teórica existente.
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De acordo com Zanella (2011), o levantamento de dados envolve um processo

de leitura e interpretação dos resultados, o qual se divide em diferentes fases. O objetivo

principal desse processo é ampliar o conhecimento acerca do objeto de estudo de forma

mais clara e fundamentada. A autora destaca que as etapas para a elaboração de uma

pesquisa são leitura exploratória, leitura seletiva, leitura reflexiva e leitura interpretativa.

A leitura exploratória, segundo Marconi e Lakatos (2003), consiste em uma

sondagem inicial de materiais de pesquisa e obras já publicadas. Essa etapa tem como

objetivo obter uma visão geral do que já foi produzido sobre o tema. Nesse sentido, a

presente pesquisa realizou uma prospecção de trabalhos acadêmicos por meio de plataformas

especializadas, anteriormente mencionadas, além da consulta a livros disponíveis tanto

na biblioteca física quanto na biblioteca digital da Universidade Estadual do Maranhão –

Campus Balsas, com a finalidade de aprofundar o conhecimento sobre o tema investigado.

Segundo Gil (2002), a leitura seletiva corresponde ao processo de triagem do

material coletado, focando naquilo que, de fato, é relevante para os objetivos da pesquisa.

Nessa fase, a partir dos dados obtidos na leitura exploratória, realizou-se a seleção criteriosa

dos conteúdos pertinentes, descartando-se os que não apresentavam relação direta com o

foco do estudo. Para isso, foram analisados os títulos e resumos das produções encontradas,

a fim de verificar sua adequação ao escopo da presente investigação.

Sobre a leitura reflexiva, conforme, Marconi e Lakatos (2003), é a etapa que

proporciona maior profundidade ao estudo, sendo responsável por reunir e analisar as

informações mais relevantes para a pesquisa. Trata-se do momento de fechamento conceitual,

no qual se comparam ideias, estabelecem-se relações e são feitos julgamentos críticos a

respeito do tema investigado, nesta etapa, a presente pesquisa procedeu a uma análise

criteriosa de todos os trabalhos selecionados nas fases anteriores, organizando os dados e

estruturando as ideias que fundamentaram o delineamento final da investigação.

No que diz respeito à última fase, foi realizada uma leitura interpretativa dos

trabalhos, o que proporcionou um melhor entendimento e um aprofundamento sobre o

tema em questão.

O primeiro capitulo é destinado a introdução desse trabalho. Já o segundo

capítulo, é apresentado o contexto histórico das equações diferenciais, destacando seu

desenvolvimento ao longo dos séculos. A análise baseia-se nas obras de Boyce e DiPrima

(2015) e de Bassanezi e Ferreira Jr. (1988), que traçam a evolução desse campo por meio

da contribuição dos principais matemáticos responsáveis pela formulação e consolidação

das equações diferenciais ao longo do tempo.

Os capítulos três e quatro abordam as equações diferenciais de Primeira e

Segunda Ordem, apresentando a fundamentação teórica dessas equações lineares, tanto

homogêneas quanto não homogêneas. Além disso, explicam os principais métodos de

resolução, como o fator integrante, a separação de variáveis e a equação característica.

Essa análise está bastante baseada nos métodos sugeridos por Boyce e DiPrima (2015),
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Zill e Cullen (2001) e Bronson e Costa (2008).

O capítulo cinco foi destinado a apresentar o conceito histórico do

eletromagnetismo e seu desenvolvimento ao longo do tempo. Já o capítulo seis teve

como foco o debate sobre os circuitos elétricos, seus principais componentes, tipos e as leis

fundamentais que os regem, como as leis de Kirchhoff e Ohm.

O capítulo sete foi destinado à discussão da metodologia adotada para alcançar

a aplicação apresentada no capítulo oito deste trabalho, que consistiu na aplicação das

equações diferenciais em circuitos RC, RL e RLC, com base em obras literárias como

Boyce e DiPrima (2015), Bronson e Costa (2008) e Zill e Cullen (2001).
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8 APLICAÇÃO DE EDOS EM CIRCUITOS ELÉTRICOS

Este capítulo será dedicado à aplicação das equações diferenciais em circuitos

elétricos, abordando os circuitos do tipo RC, RL e RLC. Utilizaremos os conceitos

desenvolvidos ao longo deste trabalho para a resolução de alguns problemas, os quais

foram selecionados a partir das obras de Bronson e Costa (2008) e Zill e Cullen (2001).

1° Problema (Bronson; Costa, 2008, p.85): Um circuito RC possui uma fem de

5 volts, uma resistência de 10 ohms, uma capacitância de 102 farad, e, inicialmente

um carga de 5 coulombs no capacitor. Determine a corrente transitória.

Resolução: Neste problema, temos os seguintes dados, a força eletromotriz

E = 5 V, resistência R = 10 Ω e capacitância C = 102 F. Com base nessas informações,

podemos estabelecer a seguinte equação:

R
dq

dt
+

1

C
q = E(t) (8.1)

Substituindo os valores fornecidos na equação (8.1) fica da seguinte forma:

10
dQ

dt
+

Q

100
= 5 (8.2)

Multiplicando ambos os temos por 100 para que possamos simplificar

posteriormente, dessa forma a equação (8.2) fica da seguinte forma:

1000
dQ

dt
+ Q = 500 (8.3)

Reorganizando fica:

dQ

dt
+

1

1000
Q =

1

2
(8.4)

A equação (8.4) é uma equação diferencial linear de primeira ordem, cuja forma

geral pode ser expressada por:

dy

dt
+ p(t)y = g(t) (8.5)

Considerando P (t) = 1
100

e g(t) = 1
2
, o fator integrante associado à equação é

dado por:

µ(t) = e
∫

P (t)dt = e
t

1000 (8.6)
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Multiplicando a equação (8.4) por e
t

1000 (fator integrante ) em ambos os lados

a nova equação será dada por:

e
t

1000

dQ

dt
+

1

1000
e

t

1000 Q =
1

2
e

t

1000 (8.7)

Observe que o lado esquerdo da equação (8.7) possuir a estrutura da regra do

produto desse modo consideramos que a função (y(t) = Q(t) · e
t

1000 ) e sua derivada em

relação a (t) será:

d

dt

(

Q(t) · e
t

1000

)

=
dQ

dt
· e

t

1000 + Q(t) · d

dt

(

e
t

1000

)

(8.8)

Calculando a derivada de e
t

1000 temos que:

d

dt

(

e
t

1000

)

= e
t

1000 · d

dt

(

t

1000

)

= e
t

1000 · 1

1000
(8.9)

Substituindo este resultado de volta na regra do produto, obtemos que:

d

dt

(

Q(t) · e
t

1000

)

= e
t

1000

dQ

dt
+

1

1000
e

t

1000 Q (8.10)

Comparando este resultado com o lado esquerdo da Equação (8.7), verifica-se

que são idênticos. Portanto, a equação (8.7) pode ser reescrita como a derivada de um

produto:

d

dt

(

Q(t) · e
t

1000

)

=
1

2
e

t

1000 (8.11)

Integrando ambos os lados da equação (8.11) fica:

Q(t) · e
t

1000 =
∫ 1

2
e

t

1000 dt = 500e
t

1000 + C (8.12)

Logo,

Q(t) = 500 + Ce−
t

1000 (8.13)

Utilizando a condição inicial dado no problema Q(0) = 5, temos:

5 = 500 + C ⇒ C = −495 (8.14)

Portanto, a carga no capacitor em função do tempo é dada por:

Q(t) = 500 − 495e−
t

1000 (8.15)
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A corrente do circuito e dada:

I(t) =
dQ

dt
(8.16)

Derivando Q(t) na equação (8.15) temos que:

I(t) =
dQ

dt
=

495

1000
e−

t

1000 = 0,495 e−
t

1000 A (8.17)

Portanto, a corrente transitória do circuito é representada pela equação (8.17),

que mostra que a corrente no circuito RC não se mantém constante com o tempo. Logo

após a ligação da fonte, a corrente tem seu valor máximo, que é 0,495 A. A partir desse

ponto, ela começa a diminuir gradualmente, seguindo um decaimento exponencial, até

se aproximar de zero. Isso acontece porque a energia armazenada no capacitor vai sendo

dissipada pelo resistor. Com o tempo, o circuito atinge o regime permanente, momento em

que não há mais corrente circulando. Esse comportamento confirma a natureza transitória

do circuito, ou seja, um processo que muda com o tempo até estabilizar.

2° Problema Zill e Cullen (2001, p.114) Uma força eletromatriz (fem) de 30

volts é aplicada a um circuito em série RL no qual a indutância é de 0, 5 henry e a

resistência, 50 ohms. Encontre a corrente i(f) se i(0) = 0.

Utilizando a Segunda Lei de Kirchhoff, a soma das quedas de tensão nos

componentes é igual à tensão fornecida pela fonte. A equação diferencial que modela um

circuito RL em série é:

L
di

dt
+ Ri = E(t) (8.18)

Substituindo os dados fornecidos:

0,5
di

dt
+ 50i = 30 (8.19)

Para resolver a equação (8.19), podemos primeiro dividi-la por 0,5 para

simplificar:

di

dt
+ 100i = 60 (8.20)

Trata-se de uma equação diferencial linear de primeira ordem. O fator integrante

é dado por:

µ(t) = e
∫

100 dt = e100t (8.21)
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Multiplicando ambos os lados da equação (8.20) por e100t:

e100t di

dt
+ 100e100ti = 60e100t (8.22)

O lado esquerdo da equação (8.22) é a derivada do produto:

d

dt

(

i(t) · e100t
)

= 60e100t (8.23)

Integrando ambos os lados da equação (8.23):

i(t) · e100t =
∫

60e100t dt =
60

100
e100t + C = 0,6e100t + C (8.24)

Isolando i(t) da equação (8.24):

i(t) = 0,6 + Ce−100t (8.25)

Aplicando a condição inicial fornecida pelo problema temos que i(0) = 0:

0 = 0,6 + C ⇒ C = −0,6 (8.26)

Portanto, a expressão da corrente elétrica no circuito em função do tempo é:

i(t) = 0,6(1 − e−100t) (A) (8.27)

A equação (8.27), descreve o comportamento da corrente elétrica em um circuito

RL sob a ação de uma fonte de tensão constante. Observa-se que, no instante inicial (t = 0),

a corrente é nula, como indicado pela condição inicial, e que ela cresce gradualmente com

o tempo, aproximando-se de um valor máximo de 0,6 A à medida que t → ∞. Esse valor

corresponde ao regime permanente do circuito. O termo exponencial negativo representa a

parte transitória do sistema, que decai rapidamente devido à constante de tempo associada

à razão L
R

. Assim, o resultado mostra como a corrente evolui de forma suave, partindo do

repouso até atingir seu valor final estável.



54

3° Problema Zill e Cullen (2001, p.265) Encontre a carga do capacitor em

um circuito em serie L-R-C no instante t = 0, 01 segundo quando L = 0, 05 henry,

R = 2 ohms, C = 0, 01farad, E(t) = 0 volt q(0) = 5 coulombs e i(0) = 0 ampère.

Determine o primeiro instante no qual a carga do capacitor é zero.

Sabemos que a equação para um circuito série RLC com força eletromotriz

E(t) é:

L
d2q

dt2
+ R

dq

dt
+

1

C
q = E(t) (8.28)

Os valores fornecido pelo problema é:

L = 0,05 H, R = 2 Ω, C = 0,01 F, E(t) = 0

Substituindo:

0,05
d2q

dt2
+ 2

dq

dt
+ 100q = 0 (8.29)

Dividindo a equação (8.29) por 0,05:

d2q

dt2
+ 40

dq

dt
+ 2000q = 0 (8.30)

A equação (8.30) é classificada como uma equação diferencial linear homogênea

de segunda ordem com coeficientes constantes. Devido a essas características, é adequado

aplicar o método da equação característica, por meio do qual a equação diferencial é

transformada em uma equação algébrica:

r2 + 40r + 2000 = 0 (8.31)

Para resolver a equação característica (8.31) aplicamos Bhaskara:

r =
−40 ±

√
402 − 4 · 1 · 2000

2
(8.32)

=
−40 ±

√
1600 − 8000

2
(8.33)

=
−40 ±

√
−6400

2
(8.34)

=
−40 ± 80i

2
(8.35)

= −20 ± 40i (8.36)
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Desse modo a solução geral fica:

q(t) = e−20t (A cos(40t) + B sin(40t)) (2)

Aplicando condições iniciais:

q(0) = 5, q′(0) = 0 (8.37)

Usando q(0) = 5:

q(0) = e0(A · cos(0) + B · sin(0)) = A ⇒ A = 5 (8.38)

Derivando q(t):

q′(t) =
d

dt

[

e−20t(5 cos(40t) + B sin(40t))
]

(8.39)

= −20e−20t(5 cos(40t) + B sin(40t)) (8.40)

+ e−20t (−5 · 40 sin(40t) + B · 40 cos(40t)) (8.41)

= e−20t [(40B − 100) cos(40t) + (−20B − 200) sin(40t)] (8.42)

Aplicando q′(0) = 0:

q′(0) = e0 [(40B − 100) · 1 + (−20B − 200) · 0] = 40B − 100 = 0 ⇒ B = 2,5 (8.43)

Solução final para q(t):

q(t) = e−20t (5 cos(40t) + 2,5 sin(40t)) (8.44)

Como o valor de q = (0,01) Substituímos na equação (8.44) a qual fica:

q(0,01) = e−0,2 (5 cos(0,4) + 2,5 sin(0,4)) (8.45)

Resolvendo a equação (8.45) temos que:

≈ 0,8187 (5 · 0,9211 + 2,5 · 0,3894)

≈ 0,8187(4,6055 + 0,9735)

≈ 0,8187 · 5,579

≈ 4,566 C
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Desse modo, a carga no instante t = 0,01 s é aproximadamente 4,566 C.

Agora, vamos determinar o primeiro instante em que a carga se anula, isto é,

quando q(t) = 0:

q(t) = e−20t(5 cos(40t) + 2,5 sin(40t)) = 0 (8.46)

Como e−20t ̸= 0, basta:

5 cos(40t) + 2,5 sin(40t) = 0 ⇒ tan(40t) = −2 (8.47)

Desse modo a solução fica:

40t = π − arctan(2) ≈ π − 1,107 ≈ 2,0346 (8.48)

t ≈ 2,0346

40
≈ 0,0509 s (8.49)

Desse modo o instante em que q(t) = 0 é aproximadamente 0, 0509 s

Assim o resultado obtido indica que a carga elétrica no capacitor, que

inicialmente era de 5 C (coulombs), diminui ao longo do tempo devido à ação combinada

da resistência, da indutância e da capacitância do circuito. No instante aproximado de

0,0509 segundos, essa carga torna-se igual a zero pela primeira vez.

Esse fenômeno ocorre porque o circuito RLC está oscilando de forma amortecida:

a energia elétrica inicialmente armazenada no capacitor é transferida entre o indutor e

o capacitor, ao mesmo tempo em que parte dessa energia é dissipada na resistência do

circuito.

Portanto, o instante t ≈ 0,0509 s representa o primeiro momento em que toda

a carga armazenada no capacitor foi descarregada, ainda que temporariamente, antes de

possíveis oscilações residuais, típicas desse tipo de circuito, ocorram.
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9 CONSIDERAÇÕES FINAIS

A presente pesquisa foi motivada pelo interesse em compreender, de maneira

mais aprofundada, a aplicação da modelagem Matemática na Física, especificamente

no âmbito dos circuitos elétricos. Paralelamente, almejou-se fomentar a curiosidade e o

engajamento de outros pesquisadores acerca da temática, evidenciando sua relevância para

a formação acadêmica e para o avanço científico.

Ao longo do desenvolvimento deste trabalho, adotou-se uma metodologia

pautada na clareza e objetividade, sustentada por um referencial teórico sólido que

abordou, de forma sistemática, conceitos fundamentais e técnicas de resolução de equações

diferenciais ordinárias, tais como o método do fator integrante, o tratamento de problemas

de valor inicial e a classificação das equações quanto à ordem, tipo e linearidade.

Além disso, foram discutidos aspectos históricos do eletromagnetismo e dos

circuitos elétricos, com ênfase na apresentação dos elementos constituintes desses sistemas

resistores, capacitores e indutores e nas leis fundamentais que os regem, como a Lei de

Ohm e as Leis de Kirchhoff. A investigação incluiu ainda a análise de circuitos de primeira

e segunda ordem, permitindo verificar, de forma concreta, a aplicabilidade das equações

diferenciais na modelagem de sistemas físicos reais.

Dessa forma, a pesquisa demonstrou a importância das equações diferenciais

ordinárias como instrumento essencial na compreensão e solução de fenômenos

eletromagnéticos, reforçando a necessidade de sua inclusão e valorização no estudo da

Matemática aplicada, especialmente nas ciências exatas e tecnológicas.

Vale destacar que, ao aliar fundamentos teóricos, históricos e aplicações práticas,

este trabalho buscou não apenas contribuir para a formação técnica e científica do

pesquisador, mas também evidenciar a potência das equações diferenciais como linguagem

universal para interpretar os fenômenos naturais e tecnológicos. Ao tratar de circuitos

elétricos por meio da modelagem matemática, reforça-se o caráter interdisciplinar da

Matemática, incentivando abordagens educacionais que integrem teoria e prática de forma

mais significativa.

Por fim, espera-se que este estudo possa servir de base para futuras investigações,

promovendo a reflexão sobre novas metodologias de ensino e pesquisa que envolvam a

modelagem matemática e sua aplicação em sistemas físicos. Acredita-se que, ao tornar

os conceitos mais acessíveis e contextualizados, contribui-se não apenas para o avanço

acadêmico, mas também para a popularização da ciência e o fortalecimento do pensamento

crítico e analítico nas novas gerações de estudantes e pesquisadores.
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