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RESUMO

Este trabalho tem como objetivo apresentar uma abordagem das Equacoes Diferenciais
Ordinérias (EDO) aplicadas em circuitos elétricos. Inicialmente, ¢ feito um resgate
histérico do desenvolvimento das equagoes diferenciais e do eletromagnetismo, destacando
contribuicoes de cientistas como Newton, Leibniz, Euler e Maxwell. O estudo se aprofunda
na classificacao das equacgoes diferenciais quanto ao tipo, ordem e linearidade, além de
apresentar métodos de resolucdo como separacao de variaveis, fator integrante e uso da
equacao caracteristica. Na parte aplicada, sao analisados elementos de circuitos elétricos
(resistores, capacitores, indutores) e suas relagoes com as EDOs, evidenciando como
a modelagem matematica contribui para compreender e resolver problemas fisicos e
tecnolégicos. A pesquisa adota uma abordagem bibliografica e exploratéria, baseada em

autores classicos e contemporaneos.

Palavras-chave: Equagoes diferenciais ordinarias. Circuitos elétricos. Modelagem

matematica. Fisica aplicada.



ABSTRACT

This work aims to present an approach to Ordinary Differential Equations (ODEs) applied
to electrical circuits. Initially, a historical overview of the development of differential
equations and electromagnetism is provided, highlighting contributions from scientists
such as Newton, Leibniz, Euler, and Maxwell. The study delves into the classification
of differential equations regarding type, order, and linearity, in addition to presenting
solution methods such as separation of variables, integrating factor, and the use of the
characteristic equation. In the applied section, elements of electrical circuits (resistors,
capacitors, inductors) and their relationships with ODEs are analyzed, demonstrating how
mathematical modeling contributes to understanding and solving physical and technological
problems. The research adopts a bibliographic and exploratory approach, based on classical

and contemporary authors.

Keywords: Ordinary Differential Equations. Electrical Circuits. Mathematical Modeling.
Applied Physics.
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1 INTRODUCAO

As equagoes diferenciais (EDs) desempenham uma func¢ao fundamental na
modelagem Matemaética, sendo constantemente utilizadas em cursos de exatas como
Matematica, Fisica, Quimica e Engenharia. Sua importancia tem como objetivo aprimorar
calculos e realizar analises mais detalhadas de seus processos e comportamento. No entanto,
as EDs nao se restringem apenas ao campo das exatas, tendo uma vasta utilidade em outras
areas do conhecimento, como Biologia, Medicina e outras ciéncias. O que as transforma em
uma ferramenta indispensavel para a humanidade, proporcionando uma base Matematica
que constitui em conhecimento mutuo sobre o processo dindmico que ocorre na natureza e
na sociedade, o que traz mudancas significativas e interagoes complexas, resultando em
progressos cientificos e tecnologicos.

Diante disso, com a crescente presenca de dispositivos eletronicos em nosso
cotidiano, seja em nossas casas ou trabalho, mostra que estamos rodeados de tecnologia.
Desse modo, compreender os principios que regem o funcionamento dos circuitos elétricos
tornou-se uma habilidade cada vez mais valorizada, tanto na formacao académica quanto
na pratica profissional. Os circuitos elétricos representam sistemas fisicos que envolvem
componentes como resistores, capacitores e indutores, os quais, quando organizados em
um circuito, obedecem a leis fundamentais da Fisica, como as Leis de Ohm e de Kirchhoff.
No entanto, o comportamento dinamico dessas estruturas, especialmente em situagoes com
fontes variaveis de corrente ou tensao, exige um tratamento matematico mais profundo,
no qual as equagoes diferenciais ordinarias desempenham papel essencial.

As equagdes diferenciais possibilitam a modelagem de sistemas que evoluem
com o decorrer do tempo, fornecendo uma descri¢ao precisa das variacoes de grandezas
elétricas, como corrente e tensdo. Em especial, os circuitos do tipo RC, RL e RLC, que
envolvem elementos com capacidade de armazenar energia, sao classicamente estudados
com base em equagoes diferenciais de primeira ou segunda ordem. O estudo desses circuitos
permite ao futuro professor ou profissional da Matematica reconhecer na pratica a poténcia
das ferramentas matematicas na resolugao de problemas concretos.

Além da aplicacao pratica, este trabalho reforca a relacao entre a Matemaética
e areas como a Fisica. A interdisciplinaridade favorece uma aprendizagem mais integrada
e significativa. Ao abordar equagoes diferenciais aplicadas aos circuitos elétricos, busca-se
superar abordagens didaticas que tratam a Matematica de forma isolada.

Desse modo, a presente pesquisa tem como objetivo compreender o estudo
das equagoes diferenciais ordinarias (EDOs). Para alcancar este propésito, o trabalho
se propoe a cumprir os seguintes objetivos especificos: mostrar o contexto histérico das
equagoes diferenciais e do eletromagnetismo; classificar os diferentes tipos de equagoes
diferenciais; e demonstrar estratégias metodolégicas eficazes para facilitar a compreensao

e o dominio das Equagoes Diferenciais Ordinarias (EDOs) aplicada em circuitos elétricos.
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Portanto, a proposta central deste estudo vai além da resolucao de equacoes ou
da apresentacao de circuitos. Ela se ancora na valorizagao do conhecimento matematico
como linguagem universal da ciéncia, capaz de interpretar fen6menos naturais e tecnolégicos
com clareza e precisao. Acredita-se que essa abordagem contextualizada, que alia teoria,
histéria e aplicacao, possa inspirar o leitor a enxergar a Matematica nao apenas como um

conjunto de formulas, mas como ferramenta para compreender e transformar a realidade.
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2 EQUACOES DIFERENCIAIS ATRAVES DA HISTORIA

A histéria das equacgoes diferenciais, segundo diversos estudos, teve inicio no
século XVII, com as contribui¢oes de Isaac Newton (1642-1727) e Gottfried Wilhelm
Leibniz (1646-1716), considerados os pioneiros e formuladores dessa importante ferramenta
matematica, cuja aplicagdo se mostrou fundamental para o avanco da ciéncia e da
humanidade. No entanto, conforme destaca Bassanezi e Ferreira Jr. (1988), as equagdes
diferenciais ja vinham sendo desenvolvidas, ainda que de forma inicial, por estudiosos
anteriores a Newton e Leibniz, por meio de investigagoes voltadas a mecanica. Fendmenos
como a rotagao dos planetas, a oscilacao de péndulos e o movimento de queda livre ja
eram objeto de andlise por cientistas como Leonardo da Vinci (1452-1519), Johannes
Kepler (1571-1630), Galileu Galilei (1564-1642) e Christiaan Huygens (1629-1695). Apesar
dessas contribuigoes significativas, ainda faltavam, a época, conceitos matematicos mais
sofisticados que permitissem a modelagem precisa desses fenomenos. Lacuna essa que foi
suprida com os avangos promovidos por Newton e Leibniz.

Newton e Leibniz tiveram grandes contribuicoes no estudo das equacoes
diferenciais. Por meio deles foram desenvolvidas novas maneiras de derivagao e integracgao.
Newton, em particular, destacou-se ao classifica-las como equagoes de primeira ordem,

considerando trés formas distintas:

dy
dr f(z) (2.1)
W_ i) 2.2

A qual a formula (2.3) ele desenvolveu um método de resolucao, em que f(x,y)
é um polindmio em = e y em uma série infinita. J4 Leibniz desenvolveu notacao que
conhecemos hoje dx/dy , além de contribuir para o sinal de integral. Descobriu o método
de separacao de variaveis, reducao de equagoes homogéneas separaveis e procedimentos para
a resolucao de equacoes lineares de primeira ordem, assim intiimeros problemas Mecanicos,
conseguiram ser resolvidos pelas contribui¢oes de Newton e Leibniz o que incentivou a
outros cientistas a pesquisar mais sobre as equagaes diferenciais como destaca (Bassanezi;
Ferreira Jr., 1988, p.07):
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A partir desta época surgiu a questdo da resolugdo dos problemas
mateméaticos apresentados por estes modelos. Varios deles foram
resolvidos explicitamente e de maneira elegante por matematicos de
extraordindria habilidade operacional, como os da familia Bernoulli:
Jacques (1655 - 1705), Jean (1667 - 1748), Nicholas (1695 - 1726), Daniel
(1700 - 1782) e principalmente por seus alunos, insuperavel L. Euler (1707
- 1783) cuja obra (incompleta) preenche 74 grandes volumes.

Em particular, a familia Bernoulli, representada pelos irmaos Jakob (1654-1705)
e Johann (1667-1748), teve um papel importante no progresso das equagoes diferenciais,
conforme Boyce e Diprima (2015), os irmaos fizeram grande contribui¢oes ao qual eles
resolveram muitos problemas relacionados a Mecanica formuladas através das equagoes

diferenciais a qual vale destacar equagoes diferencial do tipo

y = [M] (2.4)

resolvida por Jakob, a qual ficaria conhecida como a famosa equacao “Bernoulli”, ja Johann

N

foi capaz de solucionar a equacao do tipo:

_y (2.5)

dr  ax

Jakob também apresentou pela primeira vez a expressao “integral” como
um termo moderno em seu artigo. Por outro lado, o filho de Johann, Daniel Bernoulli
(1700-1782), foi um notavel matemadtico extraordinario ao qual tinha um interesse mutuo
em equacoes diferenciais parciais, ele ficou conhecido por desenvolver a famosa equacao de
Bernoulli da mecanica dos fluidos e o primeiro a encontrar que, tempos depois, seriam
funcoes de Bessel.

Entre os cientistas que mais contribuiram para o desenvolvimento das equacoes
diferenciais, destaca-se Leonhard Euler (1707-1783), eminente matematico suico e discipulo
de Johann Bernoulli. Euler teve um papel fundamental nesse campo, oferecendo avangos
tedricos e metodologicos que revolucionaram a matematica e suas aplicagdes. Segundo
Boyce e DiPrima (2015), Euler é considerado por muitos o matemadtico mais memoravel
de todos os tempos, tendo deixado uma vasta producao intelectual composta por mais
de 70 volumes, abrangendo praticamente todas as areas da matematica, além de diversos
campos do conhecimento.

Dentre suas contribui¢oes mais notaveis, destaca-se a formulac¢ao do método do
fator integrante, essencial na resolucao de equagoes diferenciais lineares homogéneas com
coeficientes constantes. Euler também se dedicou ao estudo de equagoes diferenciais nao
lineares, propondo solugoes inovadoras que influenciaram diretamente o desenvolvimento
da matemaética aplicada. Sua genialidade transcendeu os limites da matemaética pura,
estendendo-se a fisica, a engenharia, a astronomia e & mecanica dos fluidos, consolidando-o
como uma figura central na historia da ciéncia. Suas contribui¢oes nao apenas fortaleceram
os fundamentos tedricos da matematica, mas também abriram caminhos para aplicagoes

praticas que permanecem relevantes até os dias atuais.
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2.1 Equagoes Diferenciais

Conforme Boyce e DiPrima (2015, p.54), “o estudo de Equagoes Diferenciais é
uma busca para entender algum processo Fisico representado pela modelagem Matematica,
seja ela simples ou complexo.” J4 para Bassanezi e Ferreira Jr (1988), as equagoes
diferenciais, talvez sejam as tinicas no ramo da Matemética que tém mais interagoes
com outras ciéncias desde de sua origem.

Ainda nesse contexto o mesmo autor nos afirmam, que as equagoes diferenciais
que descrevem algum processo Fisico sao conhecidas como modelos matematicos. Modelos
esses, que se tornaram indispensavel para Mecanica classica desde sua descoberta no século
XVII o que nos mostra que a Mecanica é um estudo importante nas equagoes diferencias
como ressalta Bassanezi e Ferreira Jr (1988).

Segundo Bassanezi (2002), a modelagem Matemética ¢ uma arte de reformular
e resolver problemas do cotidiano por meio da Matematica, interpretando sua linguagem e

adaptando-a as situagdes do mundo real. Ainda nesse contexto, o autor ainda afirma que:

Muitos problemas que serviram para testar métodos matematicos ou
estimular desafios e competicdes entre matematicos nos séculos XVII
e XVIII, tiveram sua origem na observacao de processos mecanicos
geralmente simples.(Bassanezi, 2002, p.21)

A construcao de um modelo matematico exige, primeiramente, o reconhecimento
de que cada problema apresenta um comportamento tunico, com caracteristicas e
peculiaridades préprias. Nesse sentido, os autores enfatizam que a modelagem nao é
uma habilidade que pode ser completamente sistematizada por meio de regras fixas ou
procedimentos padronizados. Apesar disso, o conhecimento dessas regras pode ser util como
ponto de partida, auxiliando na compreensao e na estruturacao do modelo, especialmente
em contextos mais complexos Boyce e DiPrima (2015).

Ja Bassanezi (2002), destaca que os modelos matematicos sdo uma sintese
da reflexdo sobre a realidade, cujo objetivo principal é explicar e compreender situagoes
estudadas para intervir sobre elas.

Em contra partida Bassanezi e Ferreira Jr. (1988), destacam que problemas
reais nao podem ser representados de maneira precisa, mas ao trabalhar com variaveis, os
modelos matematicos podem reproduzir de maneira aproximada o problema real vividos em
nosso cotidiano. Assim, os modelos e a modelagem Matematica representam a formulagao
e deducao de varios problemas que podem ser resolvidos por meio de equacoes diferenciais
ordinarias e parciais, tornando-se uma ferramenta essencial para a solugdo de problemas e
o avanc¢o do conhecimento intelectual na resolucao de problemas reais do nosso cotidiano.

Assim, esta pesquisa introduz os principios fundamentais das Equagoes
Diferenciais (ED), apresentando algumas defini¢oes e técnicas de resolugdo por meio

de exemplos selecionados. Para uma analise das equacdes diferenciais ordinarias, sao
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Utilizados exemplos extraidos de obras reconhecidas, como as de Boyce e DiPrima (2015),
Zill e Cullen (2001), Bassanezi e Ferreira Jr. (1988), Bronson e Costa (2008), entre outros
autores, ao longo do estudo, para obter uma analise mais aprofundada das Equacoes

Diferenciais Ordinarias.

2.2 Equacgoes diferenciais e suas classificagoes

Uma equagao diferencial pode ser compreendida como uma expressao
matematica que estabelece uma relagao entre uma funcao desconhecida e suas derivadas,
envolvendo, portanto, varidaveis dependentes e independentes. Essas equagoes surgem
quando se busca descrever fendmenos dindmicos, nos quais ha variacao de uma grandeza
em funcao de outra. Podem ser classificadas de acordo com diferentes critérios, como o tipo
(ordindria ou parcial), a ordem (relativa ao maior grau da derivada presente) e a linearidade.
Tais caracteristicas serao abordadas nas préximas segoes, visando a compreensao mais

aprofundada dessa importante ferramenta matematica.

Definicao 2.1: Variavel Dependente ¢ a variavel cujo valor depende de uma ou mais
outras variaveis. Em outras palavras, ela nao pode assumir qualquer valor livremente,

pois esta condicionada aos valores das variaveis das quais depende.

Definicao 2.2: Variavel Independente é a variavel que pode assumir qualquer valor
dentro de um determinado dominio, sem depender de outras variaveis. Ela é livre e

serve de referéncia para determinar os valores das variaveis dependentes.

2.2.1 Classificagdo em relagao ao tipo

As equacgoes diferenciais podem ser classificadas, de forma geral, em dois tipos
distintos: equagoes diferenciais ordinarias (EDOs) e equagoes diferenciais parciais (EDPs).
No caso das EDOs, trata-se de equagoes nas quais as derivadas envolvidas referem-se a
uma unica variavel independente. Em outras palavras, a fun¢do desconhecida depende
de apenas uma variavel, e todas as suas derivadas sao tomadas em relacao a essa mesma
variavel. Esse tipo de equacao é amplamente utilizado na modelagem de sistemas que

evoluem ao longo do tempo ou em fungdo de uma unica dimensao (Zill; Cullen, 2001).
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Exemplo: 2.1

A equagdo (2.6), que representa o modelo de crescimento populacional, é
classificada como uma equacao diferencial ordinaria porque envolve derivadas em relacao
a uma tunica variavel independente, neste caso, o tempo (). Isso significa que a fungao
desconhecida P(t), que descreve a populacdo em fungao do tempo, depende exclusivamente
dessa variavel, e todas as derivadas presentes na equagao sao tomadas com relagao a (t).
Esse é o critério essencial que diferencia as equagoes diferenciais ordinarias das equagoes
diferenciais parciais, as quais, por sua vez, envolvem derivadas em relagdo a duas ou mais
variaveis independentes.

Outro exemplo de equagao diferencial ordinaria pode ser observado na analise
do movimento de corpos em queda livre, conforme ilustrado no Exemplo (2.2).

Exemplo: 2.2

d
md—: =mg — yv (2.7)

A equacao vai descrever o movimento de um corpo em queda, considerando a
resisténcia do ar. Nessa expressao, m representa a massa do objeto, enquanto % indica a
taxa de variacao da velocidade com o tempo, ou seja, a acelera¢ao. O termo mg corresponde
a forca gravitacional que atua sobre o corpo, e yv representa a forca de resisténcia do
ar, que é proporcional a velocidade v. A constante y depende de caracteristicas como
o formato do objeto e o meio em que ele se move. Dessa forma, a equacdo expressa
a forca resultante sobre o corpo, segunda lei de Newton, considerando a oposicao
do ar ao movimento. Outros exemplos de equacgoes diferenciais ordinarias, extraidos

das obras de Boyce e DiPrima (2015) e de Bronson e Costa (2008), sdo apresentados a seguir:

Exemplo: 2.3

Q) | pdOE) l@(t) — B(t) (2.8)

L
dt? dt C

O exemplo 2.3, é uma equacao diferencial ordinaria, pois envolve derivadas

de uma funcao desconhecida Q(t) em rela¢ao a uma tinica varidvel independente, o tempo ¢.

Exemplo: 2.4
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dy
2 =51 +3 2.9
gy =0Tt (2.9)

O exemplo 2.4 é uma equagao diferencial ordinaria, porque relaciona a derivada

de uma fungao y(x) em relacdo a uma tnica variavel independente x.

Exemplo: 2.5

2 dy\
eyT;; +2 <y> ~1 (2.10)

O exemplo (2.5) é uma equagao diferencial ordinéria, porque envolve derivadas
da fungdo y(x) em relagdo a uma tnica variavel independente x.

As equacgoes diferenciais parciais sao aquelas em que as derivadas estao
relacionadas a duas ou mais variaveis independentes. Diferente das equagoes diferenciais
ordinarias, que lidam com variagbes em apenas uma direcao, as equagoes parciais sao
utilizadas para descrever fendmenos em que a variagdo ocorre em multiplas diregoes ao
mesmo tempo Zill e Cullen (2001).

Essas equagoes aparecem com frequéncia em situagoes do mundo real,
especialmente na fisica e na engenharia. Um exemplo classico é a equacao da onda
unidimensional, que descreve como uma vibracao se propaga ao longo de uma corda ou

superficie como vista no exemplo (2.6).

Exemplo 2.6:
0*u 0*u
Z o222 (2.11)
ot? 0x?
Onde u(z,t) representa a funcao da onda, que depende da posicao = e do
tempo t; % é a derivada parcial de segunda ordem em relacdo ao tempo; % é a derivada

parcial de segunda ordem em relacao ao espago; e ¢ é a velocidade de propagacao da onda

no meio considerado.
Exemplo 2.7:

gz = —gi (2.12)

O exemplo (2.7) é uma equagao diferencial parcial, pois u e v sdo varidveis

dependentes de duas varidveis independente z e y o que resulta que u = u(x,y) e v = v(z,y)

ou seja a equacgao ira se relacionar as taxas de variacao de u em relacao a y com as de v
em relagao a x

Outro exemplo em que as equagoes diferenciais parciais (EDPs) aparecem é na

equacao de Laplace.
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Exemplo 2.8

2 2
ga:j; + gyé =0 (2.13)
Essa é a forma bidimensional da equagao de Laplace. A fungao f(x,y) é a

incégnita da equacao e depende de duas variaveis independentes, z e y.
Essa equacao é classificada como uma equagao diferencial parcial (EDP) de
segunda ordem, homogénea e linear, e é amplamente utilizada na modelagem de fend6menos

fisicos e de engenharia.

2.2.2 Classificagdo em relacao a ordem

A ordem de uma equagao diferencial esta relacionada a derivada de maior
ordem que nela aparece. De modo geral, as equacgoes podem ser de 1? ordem , 2% ordem,

3% ordem..., ou de ordem n, podendo ser escrita na forma:

F(t7 y7 y’? y”? y’”? A ’y(n)) = O (2‘14)

Em que y é uma variavel dependente apenas de uma variavel independente ¢.

Exemplo 2.9:

dy
=7 — e 2.15
o Ty=e (2.15)

A equagao (2.15) é uma equagao diferencial de primeira ordem, pois sua maior
derivada é %, em que y ¢ a funcao incognita e x a variavel independente. Outro exemplo

de equagao diferencial de primeira ordem pode ser observado na equagao (2.7), do exemplo

dv

9> sendo v a funcao incognita e ¢ a variavel independente.

(2.2), cuja maior derivada é

2.2.3 Classificacdo em relagao a linearidade

A linearidade de uma equagao diferencial pode ser classificada como linear ou
nao-linear. Uma equagao é considerada linear quando apresenta uma fungao F' que envolve
incognita e suas derivadas, é uma funcao linear em relacdo as variaveis y, vy, y”...y™. Dessa
forma, dizemos que a equacao diferencial de ordem n é linear quando pode ser expressada

pela forma:

an(x)@ +a, — 1(x) d

dan o al(ﬂf)@ + ao(z)y = g(z) (2.16)

dz™ — 1 dz

Veja que as equacgoes diferenciais lineares sao caracterizadas de acordo com

duas propriedades:
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> A variavel dependente y e todas as suas derivadas aparecem em primeiro grau,

ou seja, a poténcia de cada termo envolvendo y ¢ igual a 1.

> (Cada coeficiente depende apenas da variavel independente x.

As equagoes diferenciais ditas nao-lineares sao equagoes que nao podem ser
escrita na forma (2.16), de acordo com Boyce e Diprima um caso simples que envolve
uma equacao diferencial ndo-linear sdo os problemas que inclui péndulos a qual tem como

equacao:

ftf + %sen@ =0 (2.17)

Onde, (#) a varidvel dependente e o (t) e a varidvel independente, o () ird
representar a oscilagdo do péndulo em um determinado instante de tempo(t). A constante
(g) representa a aceleracao da gravidade em metros por segundo (m/s?), e (L) corresponde
ao comprimento da corda ou fio, em metros (m). Trata-se de uma equagao nao linear, pois
envolve o termo (senf), o que descaracteriza a linearidade da equagao. Outro exemplo

pode ser encontrado no livro de Zill e Cullen (2001, p.04).

d3y

A equacao diferencial ordinaria (2.18) nao é linear, devido & presenga do termo

y?, pois nao obedece a primeira propriedade de linearidade.

2.3 Meétodos de solucao

As solugoes de uma equacao diferencial podem ser classificadas em gerais e
particulares. A solucao geral corresponde ao conjunto de todas as solugoes possiveis da
equagao, geralmente expressas por meio de constantes arbitrarias. Ja as solugoes particulares
sao aquelas que satisfazem condigoes iniciais ou outras condigoes complementares
especificas, conforme destacado por Bassanezi e Ferreira Jr. (1988).

Sobre esse tema, Zill e Cullen em seu livro traz algumas defini¢des do que
seria realmente uma solugao particular e geral de uma equagao diferencial, conforme sera

apresentado a seguir.

Definigao 2.3 Zill e Cullen (2001,p.04): Qualquer fun¢ao f definida em algum
intervalo I, que, quando substituida na equagao diferencial, reduz a equacao a uma

identidade, é chamada de solug¢ao para equagao no intervalo.
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Definicao 2.4 Zill e Cullen(2001,p.09): Uma solugao de uma equacao diferencial

que nao depende de parametros arbitrario é chamada de solu¢ao particular

Definicao 2.5 Zill e Cullen (2001,p.10): Se toda solucao para F(x,y,y ...y") =0
no intervalo I pode ser obtida de G(z,y, C;...C},,) = 0 por uma escolha apropriada

C1.1 =1,2..n dizemos que familia a de n-pardmetros é uma solucao geral.

J

Vale ressaltar que o intervalo I, a depender do contexto em que é utilizado, pode
assumir diferentes formas. Ele pode representar um intervalo aberto (a,b), um intervalo

fechado [a, b], ou ate mesmo um intervalo infinito, como (0, 00).

2.3.1 Problema de Valor inicial (PVI)

O problema:
dy
-7 _ 2.1
5. = [(@y) (2.19)
Sujeito a condig¢oes inicias:
y(zo) = vo (2.20)

Um problema de valor inicial (PVI) esta relacionado a uma situacdo em que
se busca determinar uma funcao que satisfaca uma equacgao diferencial juntamente com
condigoes iniciais. De forma geral, um PVI pode ser representado pela equacao % = f(z,y),
acompanhada da condigao inicial y(x¢) = yo a qual xy é um ponto pertencente a um

intervalo I, e yy é o valor da fun¢ao nesse ponto.

2.4 Teorema de existéncia de uma tnica solugao

De acordo com Boyce e Diprima(2015), Antes mesmo de iniciarmos a solugao
de um problema de valor inicial, é fundamental investigar previamente a existéncia e a

unicidade da solucao. Essa andlise pode ser guiada por trés questoes principais:

> A equacgao diferencial em questao admite solugao?
> (Caso exista uma solucgao, ela é nica?
> Ha4 alguma solugdo que satisfaga uma condigao inicial especifica?

Responder a essas perguntas ¢ essencial para garantir que estamos lidando com

um problema bem definido e que nossos esforcos nao serao em vao. Para isso, contamos
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com o Teorema de Existéncia e Unicidade, que estabelece as condigoes sob as quais uma
equagao diferencial de primeira ordem possui uma solugao tnica associada a um dado

valor inicial. Teorema a seguir pode ser encontrado em Zill e Cullen (2001, p.40):

2.1 Teorema de Existéncia e Unicidade : Seja R uma regiao retangular no

plano xy definida por a < x < b, ¢ < y < d, que contém o ponto (zg,yo) em seu

interior. Se f(x,y) e a % sao continuas em R, entao existe um intervalo I centrado

em xy e uma unica fungao y(x) definida em I que satisfaz o problema de valor

inicial.

Zill e Cullen (2001) afirmam que o teorema (2.1) é um dos mais populares entre
os teoremas de equagoes diferenciais, uma vez que os critérios de continuidade tornam a
sua verificacdo relativamente simples. No entanto, ndo é possivel estabelecer um intervalo

especifico para I onde uma solucao possa esta definida sem resolver a solucao diferencial.
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3 EQUACOES DIFERENCIAS DE PRIMEIRA ORDEM

Segundos os autores Boyce e Diprima (2015), Zill e Cullen (2001), Bassanezi e
Ferreira Jr (1988), uma equagao diferencial ordinaria de primeira ordem pode ser escrita

da seguinte forma:

dy

L) (31)

Seguindo analogia dos autores que traz também a forma escrita de uma equacao

diferencial ordinaria linear de primeira ordem, a qual tem a formas:

dy

- +p(t)y = q(t) (3.2)

Sendo p e ¢ fung¢oes que dependem apenas de uma variavel independente ¢, a
solucdo da equagao (3.2) pode ser obtida utilizando o método do fator integrante. Esse
método permite encontrar uma solugdo geral em um intervalo I, no qual as fungoes p(t) e
q(t) sdo continuas.

Ao multiplicar a equagao diferencial (3.2) por uma funcao u(t), a equacao é
transformada em uma forma integravel, o que facilita sua resolucao, pois permite aplicar a
regra da derivada do produto. A funcao pu(t) é chamada de fator integrante.

O objetivo e provar que p(t) é um fator integrante da equagao diferencial (3.2).
A resolucao a seguir sera baseada na andlise dos autores Zill e Cullen (2001), a fim de
proporcionar maior embasamento tedrico.

Multiplicando ambos lados da equagao diferencial (3.2) pelo termo pu(t) temos

que:

u(O % 4 p(ptyy = n0a(t), el (33

Observe que o objetivo ¢ fazer com que o lado esquerdo seja dado por pu(t)y(t).

Utilizando a regra da cadeia na equagao (3.3), tem-se que:

pO Y 4 (e = Sty (o) (3.4

Resolvendo a equacgao (3.4) pela regra do produto temos que:

Clu] = w4 My (35)

Subtraindo o termo p(t)% da equagdo (3.5) temos que:
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u(ep(ly = Lyt (3.

Eliminando y(t) da equacgao (3.6), sob a suposigao de que y(t) # 0, temos:
dp
tp(t) = — 3.7
uep(t) = — (3.7)

A equagdo (3.7) é uma equagao separavel, sendo possivel resolvé-la por meio

de integracao:

inlu(t)] = [ plt)dt (3.8)
Onde:

u(t) = el PO (3.9)

3.1 Equacoes Diferenciais Separaveis

De acordo com Boyce e DiPrima (2015), uma equagao diferencial de primeira
ordem escrita na forma da equagao (3.1) pode, em muitos casos, nao ser linear. Isso dificulta
sua resolucgao, pois, para equacoes nao lineares, muitas vezes nao existe um método de
solucao universalmente aplicavel. No entanto, quando a equagao pode ser reescrita na

forma:

dy  g(x)
= iy’ (3.10)

torna-se possivel aplicar o método de separacao de variaveis, ja que as variaveis

x e y podem ser isoladas em lados opostos da equacao. Reorganizando a equacao, temos:

h(y)dy = g(x)dx. (3.11)

Essa forma evidencia uma equacao diferencial separavel. A solucao, entao, pode

ser obtida por integracao direta de ambos os lados, resultando em:

/ h(y)dy = / g(z)dz + C, (3.12)

em que C' representa uma constante arbitraria de integracao.
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3.2 Equacoes diferenciais Exatas

Dentro do estudo das equacgoes diferenciais ordinarias de primeira ordem,
destaca-se uma classe conhecida como equacoes exatas. Essas equacoes possuem uma
estrutura particular que permite sua resolugao por meio da identificacdo de uma funcao
potencial, ou seja, uma func¢ao cujo gradiente reproduz a equacao original. Esse tipo de
equacgao se mostra relevante nao apenas pela elegancia matemética de sua resolugao, mas
também pelas diversas aplica¢oes em areas como a fisica, a engenharia e a modelagem de
sistemas dindmicos.

Neste topico, serda apresentado o conceito de equagoes exatas, a condigao
necessaria para sua caracterizacao, bem como o método sistematico de resolugao. Essa
abordagem é essencial para a compreensao de certos problemas praticos.

Uma equagao diferencial de primeira ordem ¢ dita exata quando admite uma

fungao potencial g(z,y), tal que:
M(z,y)dx + N(z,y)dy =0 (3.13)

A equagao (3.13) é a diferencial total de g(z,y), ou seja:

dg(x,y) = M(x,y)dx + N(x,y)dy (3.14)

Em outras palavras, existe uma funcao g(x,y) cuja diferencial total coincide
com a equagao dada. Dessa forma, resolver a equacao (3.13) equivale a determinar a fungao
g(x,y). Para que a equagdo (3.13) seja considerada exata, é necessario que sejam satisfeitas
as condigoes estabelecidas no teorema (3.1), o qual serd apresentado a seguir, pois é esse

teorema que assegura a exatidao da equacao:

Teorema 3.1 Condicao de exatidao: Sejam M (z,y) e N(x,y) fungoes continuas
com derivadas parciais continuas em uma regiao retangular R definida por a < x <

b, ¢ <y <d.Entao, uma condigdo necessaria e suficiente para que
M(z,y)dz + N(z,y)dy
seja uma diferencial exata é

OM(x,y) ON
dy - Ox

Fonte: Zill e Cullen (2001, p. 61)

Em outras palavras, o teorema estabelece que, caso as fungoes M (x,y) e N(z,y)
admitam derivadas parciais continuas em uma certa regiao, a equagao pode ser considerada

exata.
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Supondo que a equagao (3.13) seja exata, o proximo passo consiste em

determinar a funcao g(x,y) tal que:

ag(@? y) = M(z,y) (3.15)
dg(w,y)
oy N(z,y) (3.16)

Desse modo a solucao de uma equagao exata seguir o seguinte método que é

Integra a fungdo M(x,y) em relagdo a x, tratando y como constante:

g(w,y) = /M(:v,y) dx + h(y)

onde h(y) é uma func¢ao de y que surge como constante de integragao.

Deriva-se a expressao obtida para g(x,y) em relagdo a y e iguala-se a N(x,y):

2 — o (M@t 1) = 5 ([ Ma)ds) + WG = N@) 317)

Dessa equacao, determina-se h'(y) e, posteriormente, integra-se para obter h(y).

Por fim, a solucao geral da equacao diferencial é dada implicitamente por:

g(z,y)=c (3.18)

onde ¢ € R é uma constante arbitraria.
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4 EQUACOES DIFERENCIAIS DE SEGUNDA ORDEM

De acordo com Boyce e DiPrima (2015), uma equagao diferencial de segunda

ordem tem a forma:

d*y dy
— = flty, — 4.1
a7 ( Y (4.1)
A equagao (4.1) serd considerada uma equagao diferencial linear se estiver na

forma:

() =0 =at0) () - at0 (42)

Observe que a fungao f ¢ linear em y e %, e que suas fungoes p, g e ¢ sdo
fungoes especifica de tnica variavel independente ¢, porém nao dependem de y a qual pode

ser reescrita da seguinte forma:

y' 4+ pt)y +q(t)y = g(t) (4.3)

ou

P(t)y" + Qt)y" + R(t)y = G(1) (4.4)

As equagdes que se apresentam nas formas (4.3) ou (4.4) serao classificadas
como lineares, onde p, ¢ e g sdo continuas em I. As equagdes que nao se enquadrarem nas
formas anteriormente apresentadas serao classificadas como nao lineares.

se caso a fungdo ¢(t) = 0 a equagao seré classificada como homogénea, caso
contrario, seré classificada como nao-homogénea. Assim considerando a equagao (4.3) em
que p(t), q(t) e g(t) sao fungoes contantes em a, b e ¢ em que a equagao (4.3) torna-se na

forma:

ay”" +by +cy=0 coma#0 (4.5)

A equacao (4.5) serd denominada equacao linear homogénea de segunda ordem
com coeficientes constantes, cuja solugao serd discutida nas préximas secoes, abordando
tanto os casos lineares quanto os nao lineares, com o auxilio da obra literaria de Zill e
Cullen (2001).
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4.1 Solucao de uma equacao linear homogénea

Antes de comegamos a soluciona a equagao (4.5) iremos aplicar o teorema do
principio da suposicao, também conhecido como método da solucao por tentativa a qual

esta representado no teorema 4.1 :

Teorema 4.1 principio da suposicao: Sejam yi,¥s,...,yr solucoes para a
equacao diferencial linear de n-ésima ordem homogénea em um intervalo I. Entao, a
combinacao linear

y =y (x) + coyo(x) + - -+ + cryp()

Em que os ¢;, ¢ = 1,2, ..., k, sao constantes arbitrarias, ¢ também uma solucao no

intervalo.

O teorema 4.1, retirado da obra de Zill e Cullen (2001), estabelece que a soma
ou superposicao de duas ou mais solugoes de uma equacao diferencial linear homogénea
também constitui uma solugao dessa equacao.

Utilizando o método da tentativa, supde-se que a solugao da equagao (4.5) pode

ser encontrada na forma exponencial y(t) = €. Onde suas derivadas sao:

Fazendo a substitui¢ao das derivadas na equagao (4.5) tem-se que:

ar® + bre™ + ce™ =0 (4.8)

Ou inclusive:

(ar* +br +c)e" =0 (4.9)

Visto que a funcao exponencial e’ é diferente de zero para todo ¢t € R, pode-se
desconsidera-la uma equacao algébrica em que obtém-se uma equagao polinomial em r,

conhecida como equagao caracteristica:

ar* +br +c=0 (4.10)

A solugao da equacao caracteristica depende dos valores de suas raizes, que
podem ser obtidas pela férmula de Bhaskara. O tipo dessas raizes influencia diretamente

a forma da solucao da equacao diferencial original. Trés casos principais podem ocorrer:
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> Duas raizes reais e distintas: a solucao geral é dada por uma combinagao linear das

fungoes exponenciais associadas a cada raiz:
y(t) = Cre™* + Cye™, (4.11)

onde 11 e ry a0 as raizes reais distintas da equagao caracteristica.

> Duas raizes reais e iguais: neste caso, hda uma raiz dupla r, e a solugao
geral assume a formas:

y(t) = (C) + Cat)e™. (4.12)

> Duas raizes complexas conjugadas: quando as raizes sdo da forma r = a £ i, a

solugao geral pode ser escrita como:
y(t) = e (Cy cos(Bt) + Cysin(Bt)) . (4.13)

Esses trés formatos abrangem todas as possiveis solu¢oes para equagoes
diferenciais lineares homogéneas de segunda ordem com coeficientes constantes, e a escolha

da forma apropriada depende do discriminante da equacao caracteristica.

4.2 Equagoes Diferenciais Lineares Nao-Homogéneas

As equacgoes diferenciais lineares nao homogéneas de segunda ordem aparecem
com frequéncia na modelagem de sistemas fisicos, como oscilagbes mecanicas forcadas,
circuitos elétricos com fonte externa e fendmenos de propagacao de ondas.

A forma geral dessas equagoes é dada por:

2
a(m)jgg + b(m)fli + c(z)y = g(x), (4.14)
Onde a(x),b(x), c(z) e g(x) sdo fungdes continuas em um intervalo / C R, com
a(xz) # 0. O termo g(z) representa a fonte ou entrada externa e é o responsavel por tornar
a equacao nao homogénea. Quando g(x) = 0, a equagao torna-se homogénea.
Um caso comum e importante ocorre quando os coeficientes a(z),b(z) e ¢(x)

sao constantes. A equagao assume entao a forma mais simples:

d*y | dy
— — = : 4.1
am st bd:c +cy = g(x) (4.15)

A solugao geral de uma equacao diferencial linear ndo homogénea é sempre a

soma de duas partes distintas:
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> Solucao geral da equagao homogénea associada, isto é:

Py dy
—= 4+ b= = 4.1
a3 + s +cy =0, (4.16)

cuja solugdo, denotada por y,(x), depende das raizes da equagao caracteristica

associada:
ar® +br +c= 0. (4.17)

> Uma solugao particular y,(z) da equagdo nao homogénea completa:

d*y | dy
— — = : 4.1
am s+t bd:c +cy = g(x) (4.18)

Assim, a solugao geral da equacdo nao homogénea é dada por:

y(x) = yn(x) + yp(x). (4.19)

Para encontrar a solugao particular y,(x), os métodos mais utilizados sao:

> Coeficientes a determinar: Utilizado quando g(z) é uma fungdo polinomial,
exponencial, seno ou cosseno, ou uma combinacao dessas. Consiste em propor uma
forma funcional para y,(z) com coeficientes desconhecidos e substitui-la na equagao para

determinar tais coeficientes.

> Variacao de parametros: Método mais geral, que pode ser aplicado mesmo quando
(g9(x)) ndo é de forma simples. Esse método baseia-se nas solugoes da equagdo homogénea

para construir uma solucao particular da equacgdo completa.

O estudo dessas equacoes é de extrema importancia, uma vez que muitos
fendmenos naturais e artificiais sao modelados por equagoes diferenciais de segunda ordem
com termos nao homogéneos, como por exemplo sistemas massa-mola com forgas externas
ou circuitos RLC sujeitos a uma fonte de tensao variavel. A compreensao tedrica dessas

solugoes permite prever e controlar o comportamento desses sistemas.
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5 ELETROMAGNETISMO ATRAVES DA HISTORIA

De acordo com Wentworth (2009), o eletromagnetismo teve seus primeiros
indicios com o grego Thales de Mileto por volta de 600 a.C. Ele evidenciou os primeiros

vestigios da atragdo magnética com a pedra d&mbar que significa (elektron), em grego.

Figura 1 — Pedra ambar

Fonte: Disponivel em:https:
//pt.vecteezy.com/foto/25279437-macro-ambar-mineral-pedra-com-aranha-em-branco-fundo
acesso em: 30 de abr de 2025

A partir dessa descoberta, desencadeou-se uma série de estudos, porém
independentes em relagao a eletricidade e ao magnetismo, que duraram por varios séculos

e que, de acordo com Halliday e Resnick (2016, p.13) afirmam que:

A partir dessa origem modesta na Grécia antiga, as ciéncias da eletricidade
e do magnetismo se desenvolveram independentemente por muitos séculos
até o ano de 1820, quando Hans Christian Oersted descobriu uma ligacao
entre elas: uma corrente elétrica em um fio é capaz de mudar a direcdo da
agulha de uma bussola. Curiosamente, Oersted fez essa descoberta, que
foi para ele uma grande surpresa, quando preparava uma demonstragao
para seus alunos de fisica.

O primeiro estudo mais esbogado foi com o cientista Pierre de Maricourt (1220
- 1270), que escreveu o primeiro trabalho chamado “O Magneto”, a qual, de acordo com
Barbosa (2021, p.09) foi o primeiro estudo organizado sobre o magnetismo do ima natural.
Nele, Maricourt descreve como a repulsao e a atragdo de uma agulha magnética poderiam
ser utilizadas para orientar viajantes. Foi também nesse estudo que ele formulou a ideia de
que as linhas de forca convergiam para dois pontos opostos do ima, os quais denominou
de polos.

Em 1600, O médico da rainha Elizabeth I William Gilbert (1544-1603) expandiu
os estudos sobre o magnetismo com sua obra “De Magnete”. Segundo Barbosa (2021, p.
09), Gilbert sugeriu que a Terra funcionava como um grande ima e concluiu que, além do
ambar, outras substancias também poderiam apresentar propriedades similares apos serem
atritadas. Para demonstrar isso, ele desenvolveu um experimento chamado Versorium
que possibilitou identificar a atracao dessas substancias friccionadas por um corpo de
massa reduzida, que se tornaria o primeiro instrumento para estudar a energia elétrica. O
Versorium é um instrumento bésico, composto por uma agulha rotativa reforcada por um

plano.
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Figura 2 — Versorium.

Meedle

A

Fonte: Disponivel em: https://link.springer.com/chapter/10.1007/978-3-031-62994-5 1
Acesso em: 02 de abr de 2025

O cientista norte-americano Benjamin Franklin (1706 — 1790) desenvolveu uma
teoria que transformou profundamente a compreensao da eletricidade ao postular que,
por meio da friccao, um “fluido elétrico” poderia ser transferido de um corpo para outro.
Nesse processo, o objeto que recebia esse fluido passaria apresentar uma carga positiva,
enquanto o que o perdia ficaria com carga negativa. Tal formulacao esta alinhada com a

concepgao apresentada por Sousa (2021, p.36), ao citar Rocha (2002):

No século XVIII, o fisico americano Benjamin Franklin (1706-1790)
formulou que o elétron e os raios das tempestades possuiam as mesmas
propriedades, e que a carga elétrica era conservada. (Rocha, J. F., 2002,
apud Sousa, 2021, p.36)

Segundo Ribeiro (2015, p.01), Charles Augustin de Coulomb (1736-1806) foi
um cientista francés que elaborou a lei de Coulomb, que declarava que a forga entre duas
cargas elétricas era proporcional ao produto das cargas e inversamente proporcional ao
quadrado da distancia entre elas. Nesse cenario, Coulomb realizou diversas pesquisas na
area da fisica mecanica e realizou um experimento em sua balanca de tor¢ao, chegando
a lei do inverso do quadrado da distancia. Essa lei teve um grande impacto nas novas
tecnologias e nos estudos futuros, o que ajudou também a compreensao da interacao de
moléculas dentro de fluidos e sélidos, o que iria contribuir para o estudo da eletricidade e
magnetismo.

De acordo com Wentworth (2009, p. 17), Alessandro Volta (1745-1827) criou a
pilha voltaica, permitindo o controle em estudos com correntes elétricas. Hans Christian
Orsted (1777-1851) descobriu que essas correntes geram campo magnético, e Michael
Faraday (1791-1867) mostrou que a variagao do campo magnético induz um campo
elétrico. Essas descobertas foram unificadas por James Clerk Maxwell (1831-1879) em
quatro equacoes fundamentais do eletromagnetismo.

De acordo com Lima (2019, p.02), Maxwell apresentou suas equagoes do
eletromagnetismo pela primeira vez em seu artigo “Sobre Linhas de Forga Fisica”,
relacionando caracteristicas elétricas e magnéticas a luz. Sua contribuicao foi essencial
para formular a teoria eletromagnética da luz, solidificando a nocao de que a luz e as

manifestagoes eletromagnéticas sao expressoes de um tnico éter.
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6 INTRODUCAO AO CIRCUITOS ELETRICOS

Os circuitos elétricos constituem um dos contetidos mais relevantes no estudo
do eletromagnetismo, sendo amplamente abordados em diversos cursos, especialmente
nas areas de ciéncias exatas, como Engenharia Elétrica, Matematica e Fisica. Sua
aplicagdo abrange iniimeros aspectos da vida cotidiana, incluindo a geracao de energia, o
funcionamento de maquinas elétricas e o uso de aparelhos eletronicos. Trata-se, portanto,
de um tema com ampla aplicabilidade nas areas da Matematica e da Fisica, sendo
frequentemente explorado em trabalhos académicos e projetos cientificos (Alexander;
Sadiku, 2013).

Ainda segundo os autores, um circuito elétrico pode ser definido como a
interconexao de elementos elétricos. Dessa forma, entende-se o circuito como o caminho
pelo qual as cargas elétricas se deslocam por meio dos fios condutores, permitindo o

transporte de elétrons de um ponto a outro do sistema.

6.1 Lei de Ohm

Quando os elétrons se movem por um condutor, eles colidem com os atomos
do material, perdendo energia na forma de calor. A aplicacdo de uma tensao faz com
que voltem a ganhar energia, mas novas colisoes continuam ocorrendo, criando um ciclo
constante de perdas e ganhos. Essa dificuldade no movimento dos elétrons é chamada de
resisténcia elétrica. Ela exige uma tensao para manter a corrente fluindo e é representada
pela letra (R), sendo medida em ohms (€2). Em muitos condutores, a corrente elétrica I
cresce proporcionalmente a tensao V- OMalley (2014). A relagdo entre elas é dada equagio
(6.1):

V =RI (6.1)

Em que:

> (V) é a tensao (ou queda de potencial) no resistor.
> (R) ¢é a resisténcia elétrica do componente (medida em ohms(£2)).

> (I) é a corrente elétrica que passa pelo resistor (medida em amperes).

Para Halliday e Resnick (2016), um componente s6 obedece a Lei de Ohm se a
corrente elétrica que o atravessa variar linearmente com a diferenca de potencial aplicada,

independentemente do valor dessa diferenca.
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6.2 Elementos de um circuito

6.2.1 Resistor

O resistor é um dos componentes mais basicos de um circuito elétrico. Ele tem
a funcao de oferecer resisténcia a passagem da corrente elétrica, transformando parte da
energia elétrica em calor. Quando dizemos que um resistor é 6hmico, estamos afirmando
que ele obedecer a Lei de Ohm representada na equacao (6.1), ou seja quando atravessado
por uma corrente elétrica ocorre uma queda de potencial (Nussenzveig, 2015).

Ainda de acordo com Nussenzveig (2015), a conversao de energia elétrica em
energia térmica ocorre por meio do efeito Joule, quando essa energia ¢é dissipada. Essa

dissipacao pode ser representada pela férmula (6.2):

P=1I°R (6.2)

“Deve-se destacar que nem todos os resistores obedecem a Lei de Ohm. Aqueles
que a obedecem sao denominados resistores lineares”(Alexander; Sadiku, 2013, p. 30). J&
para OMalley (2014), do ponto de vista matematico, o resistor é um componente no qual
existe uma relacao algébrica entre a tensao e a corrente instantanea, definida pela equacao
(6.1). Os componentes que nao seguem essa relagdo sao conhecidos como resistores nao
lineares, sendo tratados separadamente. Exemplos de resistores lineares e nao lineares

podem ser observados na figura 03.

Figura 3 — Resistores lineares e Nao-lineares

o—AN/N/ ‘o) O%G

(a) (b)

Fonte: Jonh O "Malley (2014, p.19)

O resistor “a” sera linear, enquanto o resistor “b” serd nao linear. Desse modo,
existem diferentes tipos de resistores em um circuito, desde aparelhos eletrénicos como
televisores, micro-ondas e secadores de cabelo, nos quais os resistores dividem ou limitam
correntes e voltagens. Tais circuitos podem possuir muitos resistores (Youg; Freedman,

2016).
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Figura 4 — Diversos tipos de resistores encontrados em circuitos eletrico

EEENER

Fonte: Disponivel em :<https://viverdeeletrica.com/tipos-de-resistores-variaveis/>
acesso em 30 de Maio de 2025

Um exemplo prético de resistor nao linear é o termistor, cujo valor de resisténcia
varia de forma significativa com a temperatura. Existem dois tipos principais: NTC
(coeficiente de temperatura negativo) e PTC (coeficiente de temperatura positivo). A

Figura 05 apresenta a representacao de um termistor.

Figura 5 — Termistor

Fonte: Disponivel em : https://pt.vecteezy.com/arte-vetorial/
27775539-termistor-icone-conjunto-em-branco-fundo-ntc- termistor-resistor-placa- plano-estilo
acesso em 24 de julho de 2025

6.2.2 Capacitor e Capacitancia

Os capacitores sao dispositivos utilizados para armazenagem de carga elétrica
na forma de campo eletrostatico. Eles sdo “formados por duas placas condutoras separadas
por um material isolante ou dielétrico” (Alexander; Sadiku, 2013, p. 190). Essa configuracao
impede o fluxo direto de corrente entre as placas, permitindo no entanto, o acimulo de

cargas elétricas opostas em cada uma delas, como observado na figura 06.
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Figura 6 — Capacitor Comum

el

T4 —q

Iy
/

Fonte: Alexander; Sadiku, 2013, p.190

Geralmente o capacitor ird possuir carga liquida igual a zero, mas quando esse
condutor é ligado a uma fonte de tensao (v), ocorre a movimentagao de elétrons de uma
placa para outra em que uma placa acumula carga positiva (+@Q)) e a outra, carga negativa
(—Q). Apesar de cada placa estar carregada, o sistema como um todo possui carga liquida
nula, pois as cargas sao de mesmo médulo, mas de sinais opostos. Desse modo dizemos
que o capacitor estd em equilibrio eletrostatico quando essa distribuicao se estabiliza e
nao ha mais movimento de cargas. A diferenga de potencial entre as placas do capacitor é
diretamente proporcional a carga armazenada e inversamente proporcional a capacitancia
do dispositivo. A placa com carga (+@)) encontra-se em um potencial elétrico mais elevado,
enquanto a de carga (—@) apresenta potencial mais baixo (Young; Freedman, 2016). Nos

esquemas de circuitos elétricos, o simbolo do capacitor é representado na figura 07.

Figura 7 — Diagrama de um capacitor em um circuito elétrico

Fonte: Youg; Freedman, 2016, p.112

Sobre a capacitancia de capacitor Young e Freedman (2016, p.112) afirma quer
serd “a medida da capacidade de armazenar energia de um dado capacitor”, desse modo
varios capacitores conseguem alcangar uma capacitancia bastante alta, entre (1 — 1000uF),
porém em frequéncias mais baixas. Por outro lado, existem capacitores que funcionam

melhor em frequéncias mais altas, mas com uma capacitancia limitada, geralmente entre
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(5pF — 1uF') esse capacitores sao chamados de capacitores de cerdmica Wentworth (2009)

a equacao para calcular a capacitancia fica:

Q
C = Vo (6.3)

A unidade de medida da capacitancia é o Farad, nome dado em homenagem ao
grande fisico Michael Faraday. Um Farad equivale a (1C/V), ou seja, um coulomb por volt.
Nessa relagao, C' representa a constante de proporcionalidade, enquanto (@) corresponde
ao modulo da carga armazenada. Ja V,; indica a diferenca de potencial entre os condutores,
sendo que o condutor (a) possui a carga (+@)) e o condutor (b), a carga (—@) (Young;
Freedman, 2016).

Alexander e Sadiku (2013) afirma que, embora a capacitdncia C' seja definida
como a razao entre a carga () e a tensao V', ela ndo depende exclusivamente desses dois
fatores. Na verdade, a capacitancia também esta relacionada as caracteristicas fisicas do
capacitor, como a area das placas e a distdncia entre elas. A férmula (6.3) é utilizada
especificamente para o calculo da capacitancia de capacitores de placas paralelas, sendo

expressada por:

eA
= — A4
c=1 (6.4)

Nessa equacao, (€) representa a permissividade do material dielétrico entre as
placas, (A) corresponde & area de cada placa e (d) é a distancia entre elas. Dessa forma, é

possivel encontrar diversos tipos de capacitores, como ilustrado na figura 08.

Figura 8 — Diversos tipos de capacitores

6.2.3 Indutor e Indutancia

Indutor é um componente eletronico cuja principal funcao é armazenar energia

na forma de campo magnético, quando percorrido por uma corrente elétrica. Ele é
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geralmente constituido por um fio condutor enrolado em forma de espiral, chamado
de bobina. Sua principal caracteristica ¢ a indutancia, que mede a capacidade do indutor
de se opor a variagbes na corrente elétrica (Halliday; Resnick, 2016) em que pode ser

representada pela seguinte relacao:

A (6.5)

0

Na equagao (6.5), o termo (V) representa o nimero de espiras de um solenoide
que estd envolvido por um fluxo magnético. J& o produto (N®) corresponde ao enlagamento
do fluxo magnético. A indutdncia magnética, representada por (L), indica o quanto de
enlagcamento de fluxo magnético o indutor é capaz de produzir para uma determinada
corrente elétrica. No Sistema Internacional (SI), sua unidade de medida é o Tesla-metro
quadrado por ampere (T - m?/A), que recebe o nome de Henry (H), em homenagem ao
fisico Joseph Henry (Halliday; Resnick, 2016)

Segundo OMalley (2014), a indutancia de um indutor estd diretamente ligada
as suas caracteristicas fisicas e ao modo como ele é construido. Fatores como o formato da
bobina, o ntimero total de espiras, o tipo de material ao redor (ou dentro), do nicleo e o
espago entre as voltas do fio sao determinantes para o valor final da indutancia. Quanto
mais voltas e maior a area da secao transversal, maior tende a ser a indutancia. Para
bobinas simples, feitas em uma tinica camada, existe uma férmula aproximada para calcular
a indutancia, levando em conta a permeabilidade do material, a drea da secao transversal,
o numero de espiras e o comprimento total da bobina. Essa relacao ¢ dada na seguinte

equagao:

B N2uA
Y

Onde (N) é o niimero de espiras, (1) a permeabilidade do material, (A) a area

L (6.6)

da segdo transversal e (¢) o comprimento da bobina.

Em circuitos elétricos e eletronicos, os indutores tém diversas aplicagoes, como
filtrar sinais, suavizar variagdes de corrente, armazenar energia temporariamente ou compor
circuitos ressonantes, quando associados a capacitores. Sua representacao simbodlica nos

circuitos é mostrada na figura 09:

Figura 9 — Diagrama de um indutor em circuitos elétricos

O—YYY\—_0

Fonte: Jonh O "Malley (2014, p.158)

Como a indutancia ira depender diretamente da forma e dimensoes do indutor,

existira varios tipos de indutor a qual pode ser observados na figura 10:
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Figura 10 — Diversos tipos de indutores

)
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L

Fonte: Alexander; Sadiku, 2013, p.190

6.2.4 Tensao

A fonte de tensao é um dos elementos fundamentais em circuitos elétricos e
eletronicos, desempenhando o papel de fornecer a energia necessaria para o funcionamento
dos dispositivos conectados ao circuito. Em termos conceituais, uma fonte de tensao é um
componente ou sistema capaz de manter uma diferenca de potencial elétrico constante
entre seus terminais, independentemente da corrente que a ela esteja sendo solicitada
dentro de certos limites operacionais (OMalley, 2014). Sua equagao pode ser representada,

na equacgao (6.7):

W joules
1 == —-————— .
V{volts) () coulombs 6.7)

Além disso, a tensdo elétrica também pode ser representada por meio de
diagramas de circuitos, como ilustrado na figura 11. Nesses diagramas, os componentes
sao representados por simbolos padronizados, sendo que a fonte de tensao é indicada por
um circulo com um sinal positivo e negativo. O indutor, por sua vez, é simbolizado por
duas retas paralelas de comprimentos diferentes: a linha maior representa o terminal de

maior potencial, enquanto a menor indica o terminal de menor potencial (Barbosa, 2021).

Figura 11 — Representagao da tensao em circuitos elétricos

v(t) +
Vv vV =

Fonte: Disponivel em :https://www.maxwell.vrac.puc-rio.br/10/10__002.HTM
acesso em 16/06/2025
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Uma aplicacao pratica dessa representacao esquematica pode ser observada nas
pilhas, como exemplificado na figura 12, onde a disposi¢ao dos polos positivo e negativo

remete diretamente ao conceito de diferenca de potencial elétrico.

Figura 12 — Representacao da tensao em pilhas
_||+_
= l|'||| +

i g o | |

i i G~

(1,5v) BATERIA

BATERIAS (6 X1,5v=9v]
Fonte: Disponivel em:https://www.newtoncbraga.com.br/como-funciona/
10805-como-funcionam-as-pilhas-e-baterias-art2506.html acesso em 19/07/2025

6.3 Leis de Kirchhoff

6.3.1 Primeira lei de Kirchhoff

A primeira lei esta relacionada ao principio da conservagao da carga elétrica,
que afirma que “a soma algébrica das correntes que entram em um né (ou em um limite
fechado) é zero” (Alexander; Sadiku, 2013, p.34). Em outras palavras, a quantidade total
de corrente que chega a um ponto de conexao em um circuito (o nd) é exatamente igual a
quantidade que sai desse mesmo ponto. Isso garante que nao ha acimulo de carga elétrica
no no, refletindo diretamente a conservacao da carga. Essa lei é uma importante ferramenta
de andlise de circuitos, conhecida como Lei das Correntes de Kirchhoff (LKC) ou Lei do

NO, estéd representada matematicamente pela equagao (6.8):

i%:o (6.8)

6.3.2 Segunda lei de Kirchhoff

A segunda lei é conhecida lei de Kirchhoff para tensdo (LKT) ou lei das malhas,
e afirma que “a soma algébrica das varia¢oes de potencial encontradas ao longo de uma
malha completa de um circuito é zero” (Halliday; Resnick, 2016, secao 27.01). Ou seja, ao
percorrer um caminho fechado dentro de um circuito, a soma das quedas e elevagoes de

tensdo deve resultar em zero. Representada pela equacao (6.9):

di . Q
Lo +iR+ 5 = B() (6.9)
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6.4 Circuito de Primeira e Segunda ordem

Os circuitos elétricos do tipo RC e RL sao classificados como circuitos de
primeira ordem, pois possuem apenas um elemento armazenador de energia (capacitor ou
indutor). Isso resulta em uma equagao diferencial de primeira ordem. Por outro lado, o
circuito RLC é considerado um circuito de segunda ordem, ja que contém dois elementos de
armazenamento de energia (capacitor e indutor), o que leva a formulagdo de uma equagao
diferencial de segunda ordem (Alexander; Sadiku, 2013).

Para resolver problemas envolvendo circuitos elétricos simples, é fundamental
ter conhecimento prévio das Leis de Kirchhoff e da Lei de Ohm.

Segundo Zill e Cullen (2001), como discutido anteriormente, a Segunda Lei
de Kirchhoff para Tensdes (LKT) aplicada a circuitos elétricos estabelece que a soma
algébrica das quedas de tensao ao longo de um circuito fechado ¢ igual a forca eletromotriz
aplicada. Essa analise envolve componentes como indutores, capacitores e resistores, cujas
tensoes podem ser expressas, respectivamente, em funcao da derivada da corrente, da
carga acumulada e da prépria corrente elétrica. As expressoes matematicas que descrevem
essas tensoes dependem diretamente das constantes caracteristicas de cada componente:

indutancia; capacitancia e resisténcia, conforme apresentado a seguir:

di d?
I — Y- 1

ndutor o e (6.10)

. : dq
Resistor = iR = R— (6.11)

dt

) 1

Capacitor = ol (6.12)

Dessa forma igualando as equagodes obtemos a segunda lei Kirchhoff com suas

derivadas.

d? dg 1
L— 4+ R—+ —=q=E(t 6.13
o TR T re=E() (6.13)
Como a carga (q(t)) no capacitor estd relacionada com a corrente (i(t)) pela
expressao (i = %) , a equagao (6.13) constitui-se como uma equagao diferencial linear de

segunda ordem.

6.4.1 Circuito RC

Esse tipo de circuito é composto por um resistor e um capacitor, sendo

alimentado por uma fonte de tensao variavel no tempo. Aplicando a Segunda Lei de
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Kirchhoff, podemos obter a seguinte equacao que descreve o comportamento dos circuitos

elétricos do tipo RC:

iR+ g — E(t) (6.14)

Como as a corrente (i) e carga (Q) se relacionam com a deriva de (%) temos

uma nova equagao que vai se dada por:

dg 1
R% + ol= E(t) (6.15)

Representacao do Diagrama de um circuito RC pode ser obsevado na figura 11

Figura 13 — Circuito RC

Fonte: (Nussenzveig, 2015, p.195)

6.4.2 Circuito RL

O circuito RL é composto por um resistor e um indutor. Seu funcionamento
baseia-se no controle da corrente elétrica, sendo que o indutor atua como um elemento
de armazenamento de energia. Ao se opor a variacao da corrente, ele gera uma forca
eletromotriz contréria.

Quando a chave do circuito é fechada, estabelece-se uma tensao constante. Ao
ser aberta, o indutor passa a se comportar como um curto-circuito, pois (Ldi/dt = 0).
Antes de receber energia, o circuito ndo armazena nenhuma energia Nilsson e Riedel (2015).

Aplicando a segunda Lei de Kirchhoff, a equacao diferencial que descreve o circuito fica:

di

L— | = 1
A+ Ri=0 (6.16)
Substituindo (i(t) = %), ento:
d? dg
L—+R—=FE( 6.17
iz g = EO (6.17)

Essa equacao ¢ classificada como uma equacao diferencial ordinaria de primeira

ordem, pois envolve apenas a derivada de primeira ordem da corrente i(¢). Além disso,
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como os coeficientes (R) e (L) s@o constantes, trata-se de uma equagao com coeficientes
constantes.

A representagiao do diagrama do circuito RL pode ser observado na figura 14:

Figura 14 — Circuito RL

Fonte: (Halliday; Resnick, 2016)

6.4.3 Circuito RLC

O circuito RLC se destaca por reunir resistor, indutor e capacitor em um
unico sistema. Apesar de sua aparéncia simples, sua analise exige a aplicagdo da Segunda
Lei de Kirchhoff, que resulta em uma equacao diferencial de segunda ordem, como a
apresentada na equagao (6.13). Esse modelo matemético é essencial para compreender
como as grandezas elétricas se relacionam no tempo e como o circuito responde a diferentes

estimulos. A representacao do diagrama do circuito RLC pode ser obsevado a abaixo:

Figura 15 — Circuito RLC

Fonte: Nussenzveig (2015)



47

7 METODOLOGIA

Para Marconi e Lakatos (2003), o método cientifico é uma série de atividades
organizadas sistematicamente de forma racional, em que traz uma melhor estruturacao e
ajuda o pesquisador a chegar aos seus objetivos de forma segura e com firmeza evitado
erros e promovendo economia, ainda nesse contexto as autoras trazem a definicao a que se

refere uma pesquisa cientifica.

A pesquisa, portanto, é um procedimento formal, com método de
pensamento reflexivo, que requer um tratamento cientifico e se constitui
no caminho para conhecer a realidade ou para descobrir verdades parciais.
(Marconi; Lakatos, 2003, p.155)

Desse modo, o presente trabalho caracteriza-se como uma pesquisa bibliografica
de natureza exploratéria, com énfase na aplicacao das Equagoes Diferenciais Ordinarias
(EDOs) em circuitos elétricos. Explorando conceitos fundamentais por meio da modelagem
matematica. A pesquisa foi fundamentada em obras classicas e contemporaneas como
Boyce e DiPrima (2015), Zill e Cullen (2001), Bassanezi e Ferreira Jr. (1988), Bronson e
Costa (2008), entre outros autores, além do uso de dissertacoes, teses e artigos cientificos
obtidos por meio de plataformas como Google Académico, Scielo e Periodicos Capes.

No que diz a respeito sobre pesquisa bibliografica Gil (2002), destacar que
esse tipo de estudo serd constituido através materiais ja elaborados através de fontes
bibliograficas o que a também a carateriza também uma pesquisa exploratéria ja que seu
principal instrumento se configura através de analise de dados sobre diversas visoes em

relagdo a um problema. Gil (2002), ainda destaca a vantagem de utiliza-la:

A principal vantagem da pesquisa bibliogréafica reside no fato de permitir
ao investigador a cobertura de uma gama de fendmenos muito mais
ampla do que aquela que poderia pesquisar diretamente. Essa vantagem
torna-se particularmente importante quando o problema de pesquisa
requer dados muito dispersos pelo espago. Por exemplo, seria impossivel
a um pesquisador percorrer todo o territério brasileiro em busca de dados
sobre populacao ou renda per capita; todavia, se tem a sua disposi¢ao uma
bibliografia adequada, nao terd maiores obstaculos para contar com as
informagoes requeridas. A pesquisa bibliografica também é indispensavel
nos estudos histéricos. Em muitas situagoes, ndo ha outra maneira de
conhecer os fatos passados se ndo com base em dados bibliogréficos.(Gil,
2002, p.45)

Com relagdo a pesquisa exploratéria, esta tem como objetivo ampliar a
compreensao sobre a aplicacdo das equacodes diferenciais ordinarias no contexto dos
circuitos elétricos. Segundo Gil (2002), esse tipo de pesquisa busca proporcionar maior
familiaridade com o tema, visando torna-lo mais claro e acessivel. Assim, pode-se afirmar
que o trabalho tem como proposito o aprimoramento do conhecimento e o desenvolvimento

de novas ideias a partir da analise tedrica existente.
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De acordo com Zanella (2011), o levantamento de dados envolve um processo
de leitura e interpretacao dos resultados, o qual se divide em diferentes fases. O objetivo
principal desse processo é ampliar o conhecimento acerca do objeto de estudo de forma
mais clara e fundamentada. A autora destaca que as etapas para a elabora¢do de uma
pesquisa sao leitura exploratéria, leitura seletiva, leitura reflexiva e leitura interpretativa.

A leitura exploratéria, segundo Marconi e Lakatos (2003), consiste em uma
sondagem inicial de materiais de pesquisa e obras ja publicadas. Essa etapa tem como
objetivo obter uma visao geral do que ja foi produzido sobre o tema. Nesse sentido, a
presente pesquisa realizou uma prospeccao de trabalhos académicos por meio de plataformas
especializadas, anteriormente mencionadas, além da consulta a livros disponiveis tanto
na biblioteca fisica quanto na biblioteca digital da Universidade Estadual do Maranhao —
Campus Balsas, com a finalidade de aprofundar o conhecimento sobre o tema investigado.

Segundo Gil (2002), a leitura seletiva corresponde ao processo de triagem do
material coletado, focando naquilo que, de fato, é relevante para os objetivos da pesquisa.
Nessa fase, a partir dos dados obtidos na leitura exploratoria, realizou-se a selecao criteriosa
dos conteidos pertinentes, descartando-se os que nao apresentavam relagao direta com o
foco do estudo. Para isso, foram analisados os titulos e resumos das produgoes encontradas,
a fim de verificar sua adequagdo ao escopo da presente investigacao.

Sobre a leitura reflexiva, conforme, Marconi e Lakatos (2003), é a etapa que
proporciona maior profundidade ao estudo, sendo responsavel por reunir e analisar as
informacoes mais relevantes para a pesquisa. Trata-se do momento de fechamento conceitual,
no qual se comparam ideias, estabelecem-se relagoes e sao feitos julgamentos criticos a
respeito do tema investigado, nesta etapa, a presente pesquisa procedeu a uma analise
criteriosa de todos os trabalhos selecionados nas fases anteriores, organizando os dados e
estruturando as ideias que fundamentaram o delineamento final da investigacao.

No que diz respeito a ultima fase, foi realizada uma leitura interpretativa dos
trabalhos, o que proporcionou um melhor entendimento e um aprofundamento sobre o
tema em questao.

O primeiro capitulo é destinado a introducao desse trabalho. J4 o segundo
capitulo, é apresentado o contexto histérico das equacoes diferenciais, destacando seu
desenvolvimento ao longo dos séculos. A andlise baseia-se nas obras de Boyce e DiPrima
(2015) e de Bassanezi e Ferreira Jr. (1988), que tragam a evolucao desse campo por meio
da contribuicao dos principais matematicos responsaveis pela formulacio e consolidacao
das equagoes diferenciais ao longo do tempo.

Os capitulos trés e quatro abordam as equagoes diferenciais de Primeira e
Segunda Ordem, apresentando a fundamentacao tedrica dessas equacoes lineares, tanto
homogéneas quanto nao homogéneas. Além disso, explicam os principais métodos de
resolugao, como o fator integrante, a separacao de varidveis e a equagao caracteristica.

Essa andlise estd bastante baseada nos métodos sugeridos por Boyce e DiPrima (2015),
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Zill e Cullen (2001) e Bronson e Costa (2008).

O capitulo cinco foi destinado a apresentar o conceito histérico do
eletromagnetismo e seu desenvolvimento ao longo do tempo. J& o capitulo seis teve
como foco o debate sobre os circuitos elétricos, seus principais componentes, tipos e as leis
fundamentais que os regem, como as leis de Kirchhoff e Ohm.

O capitulo sete foi destinado a discussao da metodologia adotada para alcancar
a aplicagao apresentada no capitulo oito deste trabalho, que consistiu na aplicagao das
equagoes diferenciais em circuitos RC, RL e RLC', com base em obras literarias como
Boyce e DiPrima (2015), Bronson e Costa (2008) e Zill e Cullen (2001).
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8 APLICACAO DE EDOS EM CIRCUITOS ELETRICOS

Este capitulo sera dedicado a aplicagao das equagoes diferenciais em circuitos
elétricos, abordando os circuitos do tipo RC, RL e RLC. Utilizaremos os conceitos
desenvolvidos ao longo deste trabalho para a resolucao de alguns problemas, os quais

foram selecionados a partir das obras de Bronson e Costa (2008) e Zill e Cullen (2001).

1° Problema (Bronson; Costa, 2008, p.85): Um circuito RC possui uma fem de
5 volts, uma resisténcia de 10 ohms, uma capacitancia de 10? farad, e, inicialmente

um carga de 5 coulombs no capacitor. Determine a corrente transitoria.

Resolucgao: Neste problema, temos os seguintes dados, a forca eletromotriz
E =5V, resisténcia R = 102 e capacitancia C' = 10> F. Com base nessas informacoes,

podemos estabelecer a seguinte equacao:

dg 1
R% + ol= E(t) (8.1)

Substituindo os valores fornecidos na equacao (8.1) fica da seguinte forma:

10—2 4+ < =5 (8.2)

Multiplicando ambos os temos por 100 para que possamos simplificar

posteriormente, dessa forma a equagao (8.2) fica da seguinte forma:

d
10000;2 +Q =500 (8.3)

Reorganizando fica:

Q1 1
1 4
2 10009~ 2 (8:4)

A equagao (8.4) é uma equagao diferencial linear de primeira ordem, cuja forma

geral pode ser expressada por:

dy

Y bty =) (55)

Considerando P(t) = 145 ¢ g(t) = 3, o fator integrante associado & equacdo ¢

dado por:

t

ult) = el PO = e (8.6)
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Multiplicando a equacio (8.4) por ewm (fator integrante ) em ambos os lados

a nova equacao sera dada por:

L do 1
e 1000

T = ;6 (8.7)

Observe que o lado esquerdo da equagao (8.7) possuir a estrutura da regra do
produto desse modo consideramos que a funcao (y(t) = Q(t) - e1w) e sua derivada em

relacdo a (t) sera:

d

2 Q@) emm) = Cf LT 4+ Q(t) - i (emm) (8.8)

Calculando a derivada de e® temos que:

d t t d t t 1
7 () = 4 (5om) =™ om0 (89)

Substituindo este resultado de volta na regra do produto, obtemos que:
t ) t dQ 1

d t _t
% (Q(t) . 1000 | — QIOOOE + 1000

Comparando este resultado com o lado esquerdo da Equacao (8.7), verifica-se

10w Q (8.10)

que sdo idénticos. Portanto, a equagao (8.7) pode ser reescrita como a derivada de um

produto:

d

- (Q(t) . eﬁ) - ;@wtoo (8.11)

Integrando ambos os lados da equagao (8.11) fica:

t 1 t t
Q1) - et = [ Semwat = 500¢w +C (8.12)
Logo,
Q(t) = 500 + Ce~ 10w (8.13)

Utilizando a condigao inicial dado no problema Q(0) = 5, temos:

5=500+C = C = —495 (8.14)

Portanto, a carga no capacitor em funcao do tempo é dada por:

Q(t) = 500 — 495¢ 0 (8.15)
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A corrente do circuito e dada:

dQ
I(t) = — 1
(0 =% (5.16)
Derivando Q(t) na equagao (8.15) temos que:
I(t) = C;Cf _ 140905Oe—w%o — 0,495 ¢~ T A (8.17)

Portanto, a corrente transitéria do circuito é representada pela equagao (8.17),
que mostra que a corrente no circuito RC nao se mantém constante com o tempo. Logo
apos a ligacao da fonte, a corrente tem seu valor maximo, que é 0,495 A. A partir desse
ponto, ela comeca a diminuir gradualmente, seguindo um decaimento exponencial, até
se aproximar de zero. Isso acontece porque a energia armazenada no capacitor vai sendo
dissipada pelo resistor. Com o tempo, o circuito atinge o regime permanente, momento em
que nao ha mais corrente circulando. Esse comportamento confirma a natureza transitoria

do circuito, ou seja, um processo que muda com o tempo até estabilizar.

2° Problema Zill e Cullen (2001, p.114) Uma forga eletromatriz (fem) de 30
volts é aplicada a um circuito em série RL no qual a indutancia é de 0,5 henry e a

resisténcia, 50 ohms. Encontre a corrente i(f) se i(0) = 0.

Utilizando a Segunda Lei de Kirchhoff, a soma das quedas de tensao nos
componentes é igual a tensao fornecida pela fonte. A equacao diferencial que modela um

circuito RL em série é:

y
Ld% + Ri = E(t) (8.18)

Substituindo os dados fornecidos:

y
0,5073f +50i = 30 (8.19)

Para resolver a equagdo (8.19), podemos primeiro dividi-la por 0,5 para

simplificar:

di
— +100i = 60 8.20
o T+ 1000 (8.20)

Trata-se de uma equacao diferencial linear de primeira ordem. O fator integrante

é dado por:

u(t) = oJ 1004t _ 100t (8.21)
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Multiplicando ambos os lados da equagdo (8.20) por e!0%:

d
elOOtd% +100¢%%; — 60" (8.22)

O lado esquerdo da equagao (8.22) é a derivada do produto:

d

7 (i(t) - ) = 60e!*" (8.23)

Integrando ambos os lados da equagao (8.23):

60
(1) - el = /606100t dt — ﬁemm +C =066 4 ¢ (8.24)
Isolando i(t) da equagao (8.24):
i(t) = 0,6 + Ce 10 (8.25)

Aplicando a condigao inicial fornecida pelo problema temos que i(0) = 0:

0=06+C=C=-06 (8.26)

Portanto, a expressao da corrente elétrica no circuito em funcao do tempo é:

i(t) = 0,6(1 —e %) (A) (8.27)

A equagao (8.27), descreve o comportamento da corrente elétrica em um circuito
RL sob a acao de uma fonte de tensao constante. Observa-se que, no instante inicial (¢t = 0),
a corrente ¢ nula, como indicado pela condicao inicial, e que ela cresce gradualmente com
o tempo, aproximando-se de um valor méaximo de 0,6 A a medida que t — oo. Esse valor
corresponde ao regime permanente do circuito. O termo exponencial negativo representa a
parte transitoria do sistema, que decai rapidamente devido a constante de tempo associada
a razao %. Assim, o resultado mostra como a corrente evolui de forma suave, partindo do

repouso até atingir seu valor final estavel.
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3° Problema Zill e Cullen (2001, p.265) Encontre a carga do capacitor em
um circuito em serie L-R-C no instante t = 0,01 segundo quando L = 0,05 henry,
R = 2 ohms, C' = 0,01farad, E(t) = 0 volt ¢(0) = 5 coulombs e i(0) = 0 ampere.

Determine o primeiro instante no qual a carga do capacitor é zero.

Sabemos que a equagdo para um circuito série RLC com forga eletromotriz

E(t) é

d*q dg 1

Os valores fornecido pelo problema é:

L=005H R=2Q, C=00lF, E(t)=0

Substituindo:

d*q dg
— 4+2—+1 = 2
0,05dt2 + dt+ 00g =0 (8.29)
Dividindo a equagao (8.29) por 0,05:
d*q

d
T 40673 +2000g = 0 (8.30)

A equagao (8.30) é classificada como uma equacao diferencial linear homogénea
de segunda ordem com coeficientes constantes. Devido a essas caracteristicas, é adequado
aplicar o método da equacgao caracteristica, por meio do qual a equacao diferencial é

transformada em uma equacao algébrica:

7% + 407 + 2000 = 0 (8.31)

Para resolver a equagao caracteristica (8.31) aplicamos Bhaskara:

—40 £ /402 — 4 - 1 - 2000
r =

5 (8.32)
_ 40+ \/@ (3.33)
_ 0= ;/m (8.34)
_ —40 £80i (8.35)

2
= —20 + 40i (8.36)
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Desse modo a solucao geral fica:

q(t) = e " (A cos(40t) + Bsin(40t)) (2)

Aplicando condicOes iniciais:

q(0) =5, ¢'(0)=0 (8.37)

Usando ¢(0) = 5:
q(0) = €”(A-cos(0) + B -sin(0)) = A= A=5 (8.38)

Derivando ¢(t):

q(t) = jt [e72°"(5 cos(40t) + Bsin(40t))] (8.39)
= —20e” (5 cos(40t) + Bsin(40t)) (8.40)
+ e 2" (=5 - 40 5in(40t) + B - 40 cos(40t)) (8.41)
= e 2% [(40B — 100) cos(40t) + (—20B — 200) sin(40t)] (8.42)

Aplicando ¢'(0) = 0:

¢'(0) = €°[(40B — 100) - 1 + (—20B — 200) - 0] = 40B — 100 =0=> B =25  (8.43)

Solugao final para ¢(t):

q(t) = e 2" (5 cos(40t) + 2,5 sin(40t)) (8.44)

Como o valor de ¢ = (0,01) Substituimos na equagao (8.44) a qual fica:

q(0,01) = e % (5 cos(0,4) + 2,5sin(0,4)) (8.45)
Resolvendo a equagao (8.45) temos que:

~ 0,8187(5-0,9211 + 2,5 - 0,3894)
~ 0,8187(4,6055 + 0,9735)

~ 0,8187 - 5,579

~ 4,566 C
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Desse modo, a carga no instante ¢t = 0,01 s é aproximadamente 4,566 C.
Agora, vamos determinar o primeiro instante em que a carga se anula, isto é,
quando ¢(t) = 0:
q(t) = e (5 cos(40t) + 2,5sin(40t)) = 0 (8.46)

Como e~2% £ (), basta:

5 cos(40t) 4 2,5sin(40t) = 0 = tan(40t) = —2 (8.47)

Desse modo a solucao fica:

40t = 7 — arctan(2) ~ m — 1,107 ~ 2,0346 (8.48)
2,0346
tr 2 A~ 0,05095 (8.49)

Desse modo o instante em que ¢(t) = 0 é aproximadamente 0,0509s

Assim o resultado obtido indica que a carga elétrica no capacitor, que
inicialmente era de 5C (coulombs), diminui ao longo do tempo devido & a¢ao combinada,
da resisténcia, da indutancia e da capacitancia do circuito. No instante aproximado de
0,0509 segundos, essa carga torna-se igual a zero pela primeira vez.

Esse fenomeno ocorre porque o circuito RLC estd oscilando de forma amortecida:
a energia elétrica inicialmente armazenada no capacitor é transferida entre o indutor e
o capacitor, ao mesmo tempo em que parte dessa energia ¢é dissipada na resisténcia do
circuito.

Portanto, o instante ¢t &~ 0,0509 s representa o primeiro momento em que toda
a carga armazenada no capacitor foi descarregada, ainda que temporariamente, antes de

possiveis oscilagoes residuais, tipicas desse tipo de circuito, ocorram.
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9 CONSIDERACOES FINAIS

A presente pesquisa foi motivada pelo interesse em compreender, de maneira
mais aprofundada, a aplicacdo da modelagem Matematica na Fisica, especificamente
no ambito dos circuitos elétricos. Paralelamente, almejou-se fomentar a curiosidade e o
engajamento de outros pesquisadores acerca da tematica, evidenciando sua relevancia para
a formagao académica e para o avango cientifico.

Ao longo do desenvolvimento deste trabalho, adotou-se uma metodologia
pautada na clareza e objetividade, sustentada por um referencial teérico sélido que
abordou, de forma sistematica, conceitos fundamentais e técnicas de resolucao de equagoes
diferenciais ordindrias, tais como o método do fator integrante, o tratamento de problemas
de valor inicial e a classificagdo das equagdes quanto a ordem, tipo e linearidade.

Além disso, foram discutidos aspectos historicos do eletromagnetismo e dos
circuitos elétricos, com énfase na apresentacao dos elementos constituintes desses sistemas
resistores, capacitores e indutores e nas leis fundamentais que os regem, como a Lei de
Ohm e as Leis de Kirchhoff. A investigacao incluiu ainda a anélise de circuitos de primeira
e segunda ordem, permitindo verificar, de forma concreta, a aplicabilidade das equagoes
diferenciais na modelagem de sistemas fisicos reais.

Dessa forma, a pesquisa demonstrou a importancia das equagoes diferenciais
ordinarias como instrumento essencial na compreensao e solucao de fenomenos
eletromagnéticos, reforcando a necessidade de sua inclusao e valorizacao no estudo da
Matematica aplicada, especialmente nas ciéncias exatas e tecnoldgicas.

Vale destacar que, ao aliar fundamentos tedricos, histéricos e aplicagoes praticas,
este trabalho buscou nao apenas contribuir para a formacgao técnica e cientifica do
pesquisador, mas também evidenciar a poténcia das equagoes diferenciais como linguagem
universal para interpretar os fendmenos naturais e tecnolégicos. Ao tratar de circuitos
elétricos por meio da modelagem matematica, reforca-se o carater interdisciplinar da
Matematica, incentivando abordagens educacionais que integrem teoria e pratica de forma
mais significativa.

Por fim, espera-se que este estudo possa servir de base para futuras investigagoes,
promovendo a reflexdo sobre novas metodologias de ensino e pesquisa que envolvam a
modelagem matemaética e sua aplicagao em sistemas fisicos. Acredita-se que, ao tornar
0s conceitos mais acessiveis e contextualizados, contribui-se nao apenas para o avango
académico, mas também para a popularizagao da ciéncia e o fortalecimento do pensamento

critico e analitico nas novas geragoes de estudantes e pesquisadores.
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